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RESUMEN

Este trabajo está basado en el art́ıculo Bayesian inference and model comparison for
metallic fatigue data, con I. Babuška, Z. Sawlan, B. Szabó y R. Tempone, publicado en
https://arxiv.org/abs/1512.01779.

En este trabajo exponemos un tratamiento estad́ıstico de datos extráıdos de un conjunto
de registros de experimentos de fatiga que se realizaron en las aleaciones de aluminio
75S-T6.

Nuestro objetivo principal es predecir la vida de fatiga de materiales, proporcionando
un enfoque sistemático para la calibración y clasificación de los modelos propuestos con
referencia a los datos de fatiga. A tal efecto, consideramos varios modelos estad́ısticos con
ĺımite de fatiga y con ĺımite de fatiga aleatorio adecuados para el tratamiento de datos
censurados a la derecha.

En primer lugar, ajustamos los modelos a los datos por el método de máxima verosimi-
litud y estimamos las cuant́ıas de la distribución de vida de las aleaciones. La robustez
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de dichas estimaciones es evaluada por medio de intervalos de confianza obtenidos con
una técnica de remuestreo estratificado respecto del ciclo de carga repetida. Una primera
clasificación de los modelos adoptados es llevada a cabo a través de medidas clásicas de
ajuste basadas en criterios de información.

En segundo lugar, ampliamos el alcance de nuestro estudio considerando un enfoque
Bayesiano. Dado el escenario a priori seleccionado por el usuario para incorporar el cono-
cimiento disponible sobre los parámetros f́ısicos de interés, se obtienen las distribuciones
a posteriori aproximadas de dichos parámetros basadas en técnicas de simulación. Para
clasificar los modelos Bayesianos y determinar qué modelo seŕıa preferible para un de-
terminado escenario a priori, hemos aplicado tanto métodos basados en la estimación de
la verosimilitud marginal como en modernos criterios de información de tipo predictivo,
cuya aplicación requiere el uso de técnicas de validación cruzada.

Palabras claves: Datos de fatiga, predicción de vida de fatiga, modelos con ĺımite de
fatiga aleatorio, calibración y clasificación de modelos Bayesianos, precisión predictiva de
modelos Bayesianos.

Clasificación MSC2010: 62N05, 62N01, 62P30, 62F15.
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1. Introduction

Mechanical and structural components subjected to cyclic loading are susceptible to cu-
mulative damage and eventual failure through an irreversible process called metal fatigue.
Prediction of such fatigue through the expected service life of mechanical parts and assem-
blies is an important objective of numerical simulations used in mechanical and structural
engineering practice. Based on such predictions, inspection intervals can be established.
The frequency of these inspection intervals bears on the safety and costs of operation
Schijve (2003, 2009); Fatemi and Yang (1998).
The fatigue characteristics of materials are established through fatigue tests performed on
coupons, also called dogbone specimens, made of round bars or flat plates. The coupons
are designed such that the stress is highest in the gauge section and that it remains
substantially constant when the coupon is loaded in the axial direction. In bending and
torsion tests, the stress varies linearly over the cross section and is constant in the axial
direction, for any fixed point in the cross section.
The number of cycles to failure, the peak stress and the cycle ratio are recorded for each
experiment. The cycle ratio is defined as the minimum stress to maximum stress ratio.
When an experiment is stopped before the specimen fails, then the test record is marked
as a run-out. In some experiments, the specimen may buckle or fail outside of the gauge
section. Such experiments are disregarded. State-of-the-art reviews on mechanical fatigue
are presented in Schijve (2003) and Fatemi and Yang (1998). Here, we focus on high-cycle
(stress-life) fatigue.
The set of data pairs (Si, Ni), where Si is the stress and Ni is the corresponding number of
cycles at failure in the ith test, exhibits substantial statistical dispersion. Interpretation
and generalization of test data are essential for making risk-informed design decisions.
The goal is to find a probability distribution for the fatigue life given data and underlying
assumptions. There are many possible phenomenological models which will lead to diffe-
rent results. These results can be derived by different statistical frameworks, among them
the frequentist and the Bayesian approaches. Furthermore, there are several ways to jud-
ge the results obtained by the use of different models. Various statistical models such as
lognormal, extreme value, Weibull and Birnbaum-Saunders distributions have been used
for this purpose.
We consider different types of models that contain fatigue limit parameters. Although such
models have been widely used (see, for example, Rice et al. (2003); Pascual and Meeker
(1997, 1999); Ryan (2003)), there is an ongoing debate concerning the existence of the
fatigue limit Pyttel et al. (2011); Bathias (1999). Some authors use the terms “endurance
limit” or “fatigue strength” instead of “fatigue limit” Schijve (2003); Pascual and Meeker
(1999). We distinguish between the fatigue limit, which is a physical notion, and the
fatigue limit parameter, which is an unknown parameter, expressed in the same scale
as the equivalent stress and calibrated for different models. Usually, data support curve
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fitting up to a certain number of cycles to failure only. Extrapolation beyond that number
substantially increases uncertainty. For example, aluminum does not have a fatigue limit,
since it will always fail if tested to a sufficient number of cycles. Therefore, the fatigue
limit (fatigue strength) of aluminum is reported as the stress level at which the material
can survive after a large number of cycles. For the purposes of this paper, the number of
cycles can be fixed at 2× 107, since the available data do not contain substantially larger
cycle values.
We employ a classical (likelihood-based) approach to fit and compare the proposed models
using the 75S-T6 aluminum sheet specimen data set described in Section 2. Ultimately,
we provide an analog Bayesian approach to fit and compare the models. The classical
approach provides a point estimation (Maximum Likelihood estimate) for the model pa-
rameter θ that lies in the 90 % confidence interval if it were repeatedly used with random
data from the model for fixed θ. In the Bayesian formulation, no repetition is required
and the interval estimation is based on the posterior distribution. Although Ryan used
a Bayesian approach to find an optimal design for the random fatigue-limit model Ryan
(2003), we are, to our knowledge, the first to use Bayesian methods to analyze and com-
pare fatigue models.
The remainder of this paper is organized as follows. Section 2 introduces the main charac-
teristics of the fatigue tests conducted at the Battelle Memorial Institute on 85 75S-T6
aluminum sheet specimens by means of a Krouse direct repeated-stress testing machine.
The data set with the fatigue test results is available as a csv file in the supplemental ma-
terial to this paper. This data set contains run-outs. Section 3 presents classical statistical
models of fatigue test results. In Subsection 3.1, we first consider a classical statistical fit-
ting technique, called logarithmic fit, for illustration purposes only, that does not take in
to account the presence of run-outs. Subsequently, we introduce fatigue-limit models and
random fatigue-limit models, which are both specially designed to fit data in the presence
of run-outs. We fit two fatigue-limit models, whose mean value function is same as in the
logarithmic fit, with constant and non-constant variance functions, by constructing the
corresponding likelihood functions and estimating all the unknown parameters that define
the S-N curves by means of the maximum likelihood method. The fatigue limit parameter
assessment under both models can be done by computing numerically tailored functions
from their joint likelihoods, usually called profile likelihoods Pawitan (2001). Later, we
extend these models by assuming that the fatigue limit parameter is a random variable.
To clarify the fitting procedure that provides estimates for S-N curves and predictions of
fatigue life, we consider two random fatigue-limit models and their extensions, where a
non-constant variance function is used. The assessment of the fatigue limit parameter is
then summarized by comparing the estimated probability density functions of the four
fitted models. Subsection 3.2 includes the computation of bootstrap confidence bands for
the S-N curves and bootstrap confidence intervals for the maximum likelihood estimates.
Subsection 3.3 is dedicated to comparison of the models by some widely used information
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criteria. Section 4 focuses on the Bayesian analysis of some of the models. In Subsec-
tion 4.1, three of the models analyzed using the likelihood approach are embedded in a
Bayesian framework that we characterize based on informative priors. We use Bayesian
computational techniques to estimate the posterior probability density function of each
individual parameter of the six fitted models as well as the bivariate posterior probability
functions of all the combinations of two parameters out of the total number of parameters
for any of the six fitted models. Subsection 4.2 presents the Bayesian model comparison
approach, which includes the Bayes factor and predictive information criteria. The Bayes
factor is approximated by means of the Laplace method and the Laplace-Metropolis met-
hod. The Bayes factor is used to evaluate the fit of Bayesian models while the predictive
information criteria are used to compare models based on their predictive accuracy.

2. The 75S-T6 aluminum sheet specimens data set

Data are available from 85 fatigue experiments that applied constant amplitude cyclic
loading to unnotched sheet specimens of 75S-T6 aluminum alloys (Grover et al., 1951,
table 3, pp.22–24). The following data are recorded for each specimen:

the maximum stress, Smax, measured in ksi units.

the cycle ratio, R, defined as the minimum to maximum stress ratio.

the fatigue life, N , defined as the number of load cycles at which fatigue failure
occurred.

a binary variable (0/1) to denote whether or not the test had been stopped prior to
the occurrence of failure (run-out).

In 12 of the 85 experiments, the specimens remained unbroken when the tests were stop-
ped. The recorded number of load cycles for these 12 experiments is the lower bound of
an interval in which failure would have occurred had the test been continued. If specimens
buckled or failed outside the test section, they are not included in the data set.

3. Classical approach

3.1. Model calibration

There are many linear and nonlinear models (S-N curves) that have been used to predict
fatigue life, N , in terms of the stress, S. A good list of these models can be found in Castillo
and Fernández-Canteli (2009). In this section, we consider relevant nonlinear regression
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models used with the 75S-T6 data set. For the sake of completeness, we first show how the
fitting procedure works for a model that does not take into account the run-out feature
of some observations. This so-called “equivalent stress equation model” was used in Rice
et al. (2003). Secondly, we introduce some fatigue-limit models that are tailored to work
well in the presence of run-out observations, similar to Pascual and Meeker (1997) and
Pascual and Meeker (1999), and we calibrate each of these models by using the maximum
likelihood method.
In all the proposed models, the quantities of interest are the prediction of fatigue life, given
the test stress and the cycle ratio, and the estimation of the fatigue limit parameter. The
fatigue life predictions are summarized by means of the quantile functions. We plot the
median (S-N curve), the 0.95 quantile and the 0.05 quantile.
Prior to the fitting of any statistical model, the fatigue data obtained for particular cycle
ratios need to be generalized to arbitrary cycle ratios. For this purpose, the equivalent
stress, Seq, is then defined as S

(q)
eq = Smax (1 − R)q, where q is a fitting parameter. This

definition is also used in Rice et al. (2003) and Walker (1970).
We first consider the logarithmic fit as defined in Szabó (2012) and Rice et al. (2003);
that is,

µ(S(lg)
eq ) = A1 + A2 log10(S

(lg)
eq − A3), (1)

using the objective function proposed in (Szabó (2012)),

estd =

(∑n
i=1(log10(ni)− µ(S

(lg)
eq ))2

n− p

)1/2

, (2)

where n is the number of data points and p is the number of fitting parameters (namely
A1, A2, A3 and q).
The resulting estimated mean value function is given by

µ(S(lg)
eq ) = 10.07− 3.54 log10(S

(lg)
eq − 25.41) ,

where S
(lg)
eq = Smax (1−R)0.5147 and the value of the objective function is estd = 0.5195 .

Remark. Run-outs will introduce a bias error in the estimate when this approach is used.
The resulting estimated mean value function, without the run-outs, is given by

µ(S(lg)
eq ) = 7.71− 2.17 log10(S

(lg)
eq − 31.53) ,

where S
(lg)
eq = Smax (1 − R)0.4633 and the value of the objective function is estd = 0.3673 .

Clearly, removing the run-outs increases the value of the fatigue limit. Figure 1 shows
the estimated quantile functions for the logarithmic fit, with the estimated fatigue limit
parameter equal to 31.53 ksi. We point out that the estimated fatigue limit is equal to
31.53/(20.4633) = 22.87 ksi, since the fatigue limit is the value of the maximum stress when
the cycle ratio, R, is equal to −1 (the “fully reversed” condition).
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Figura 1: Logarithmic fit of the 75S-T6 data set without run-outs. The fatigue life predic-
tion increases toward infinity as the equivalent stress, Seq, tends to the estimated fatigue
limit parameter (horizontal asymptote) for any estimated quantile function.

3.1.1. Model Ia

Let A3 be the fatigue limit parameter. At each equivalent stress with Seq > A3, the fatigue
life, N , is modeled by means of a lognormal distribution. This implies that log10(N) is
modeled with a normal distribution with mean µ(Seq) and standard deviation σ(Seq). We
generalize the logarithmic fit by assuming that

µ(Seq) = A1 + A2 log10(Seq − A3) , if Seq > A3

σ(Seq) = τ .

Moreover, the model is now properly tailored to include the available censored fatigue data
(run-outs). Given the sample data, n = (n1, . . . , nm) and assuming that the observations
are independent, the likelihood function is therefore given by

L(A1, A2, A3, τ, q; n) =
m∏
i=1

[
1

ni log(10)
g(log10(ni) ;µ(Seq) , σ(Seq))

]δi [
1− Φ

(
log10(ni)− µ(Seq)

σ(Seq)

)]1−δi
,

where g(t;µ, σ) = 1√
2π σ

exp
{
− (t−µ)2

2σ2

}
, Φ is the cumulative distribution function of the

standard normal distribution, and

δi =

{
1 if ni is a failure
0 if ni is a run-out .
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Figura 2: Model Ia fit of the 75S-T6 data set. Under the assumption that Seq has constant
variance, the addition of the run-outs (red circles) and fitting a model designed to handle
right-censored data has the effect of enlarging the gap between the median and the 0.95
quantile (in the upper range of values of Seq, the number of cycles to attain failure has
substantially increased with respect to the logarithmic fit) and between the median and
the 0.05 quantile (in the lower range of values of Seq, the number of cycles to attain failure
has decreased with respect to the logarithmic fit). The fatigue limit parameter estimate
(purple line) is closer to the observed failures (blue circles) with smallest values of Seq
than the same estimate using the logarithmic fit (Figure 1).

This model is characterized by five parameters: θ = (A1, A2, A3, q, τ), whose maximum
likelihood (ML) estimate, obtained by calibrating the model with the data, is

µ(Seq) = 7.38− 2.01 log10(Seq − 35.04) ,

where Seq = Smax (1 − R)0.5628 and τ = 0.5274 . The maximum likelihood estimates are
summarized in Table 1. The corresponding fit is shown in Figure 2 (blue circles = observed
failures; red circles = run-outs). The difference between Model Ia and the logarithmic
fit shows the importance of including the run-outs especially in the estimation of the
fatigue limit. Run-outs that correspond to equivalent stress levels greater than the fatigue
limit parameter are called significant run-outs. Only significant run-outs contribute to
estimating the parameters. In this case, eight of the 12 run-outs were significant.
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Cuadro 1: Maximum likelihood estimates for Model Ia

A1 A2 A3 q τ
Model Ia 7.38 -2.01 35.04 0.5628 0.5274

3.1.2. Model Ib

We extend the model proposed in Subsection 3.1.1 by allowing a non-constant standard
deviation as in Pascual and Meeker (1997):

µ(Seq) = A1 + A2 log10(Seq − A3) , if Seq > A3

σ(Seq) = 10(B1+B2 log10(Seq)) , if Seq > A3
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Figura 3: Model Ib fit of the 75S-T6 data set. Allowing non-constant variance of Seq in a
censored data model has the effect of reducing the gap between the median and both the
0.95 and 0.05 quantiles along the upper range of values of Seq. In the case of the lower
range of values of Seq, the gap between the median and the 0.05 quantile has increased
with respect to the Model Ia fit (Figure 2). The estimate of the fatigue limit parameter is
very close to the minimum value of Seq that leads to failure. The estimated fatigue limit
is 24.71 ksi.
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In this model, there are six parameters: θ = (A1, A2, A3, q, B1, B2), and their ML estimates
are

µ(Seq) = 6.72− 1.57 log10(Seq − 36.21),

σ(Seq) = 10(4.55−2.89 log10(Seq)),

where Seq = Smax (1 − R)0.5510. The maximum likelihood estimates are summarized in
Table 2. The corresponding fit is shown in Figure 3 (blue circles = observed failures;
red circles = run-outs). Figure 3 shows that the uncertainty in predicting fatigue life
decreases with high values of the equivalent stress when compared to Model Ia. However,
the uncertainty increases for values of the equivalent stress that are close to the estimated
fatigue limit parameter. In Model Ib, there are seven significant run-outs because the
fatigue limit parameter has increased to 36.21 ksi. When A3 < Seq < 100, the estimated
standard deviation ranges between 1.11 and 0.059 , supporting the assumption of a non-
constant standard deviation.

Cuadro 2: Maximum likelihood estimates for Model Ib

A1 A2 A3 q B1 B2

Model Ib 6.72 -1.57 36.21 0.5510 4.55 -2.89

Remark. Profile likelihoods. To assess the plausibility of a range of values of the fatigue
limit parameter, A3, we construct the profile likelihood (Pascual and Meeker, 1997, p.
294):

R(A3) = max
θ0

[
L(θ0, A3)

L(θ̂)

]
, (3)

where θ0 denotes all parameters except for the fatigue limit parameter, A3, and θ̂ is the
ML estimate of θ.
Figure 4 shows the profile likelihood functions for A3 corresponding to the models in
Subsections 3.1.1 and 3.1.2. As in Pascual and Meeker (1997), approximate 100(1− α) %
confidence intervals for A3 based on the calibrated profile likelihoods are given by: {A3 :
−2 log(R(A3)) ≤ χ2

1;1−α} , where χ2
1;1−α is the 100(1 − α) percentile of a chi-square dis-

tribution with 1 degree of freedom. The approximate 95 % confidence intervals for A3 are
(32.45, 36.28) and (34.36, 36.88) for models Ia and Ib, respectively. We can see that each
model suggests a different range for the fatigue limit parameter, A3. We therefore need
to systematically choose which model is better to assess the value of A3.
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Figura 4: Profile likelihood estimates for the fatigue limit parameter, A3, with Model Ia
fit (blue curve) and Model Ib fit (red curve). The two fitted fatigue-limit models display
different ranges for the most plausible values of the fatigue limit parameter, A3, a feature
that is amplified by the left-skewed profile likelihood under Model Ib.

3.1.3. Model IIa

We now extend the model proposed in Subsection 3.1.1 to allow a random fatigue limit
parameter as in Pascual and Meeker (1999) :

µ(Seq) = A1 + A2 log10(Seq − A3) , if Seq > A3.

σ(Seq) = τ .

log10(A3) ∼ N(µf , σf ).

Here, we assume that log10(N) given A3 < Seq is modeled with a normal distribution with
mean µ(Seq) and standard deviation σ(Seq). In this case, the probability density function
(pdf) of log10(N) is obtained by marginalizing A3:

flog10(N)(u ; θ) =

∫ Seq

0

h(u ;µ(Seq) , σ(Seq)) `A3(w ;µf , σf ) dw ,

where θ = (A1, A2, µf , σf , q, τ), h(u ;µ(Seq) , σ(Seq)) is the conditional density of log10(N)
given A3, and `A3(w ;µf , σf ) is the marginal density of A3. Similarly, the marginal cumu-
lative distribution function (cdf) of log10(N) is given by

Flog10(N)(u ; θ) =

∫ Seq

0

Φ

(
u− µ(Seq)

σ(Seq)

)
`A3(w ;µf , σf ) dw ,
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where Φ is the conditional cumulative distribution function of log10(N) given A3. The
functions flog10(N) and Flog10(N) no longer have closed forms and must be numerically eva-
luated. Global adaptive quadrature is used to approximate the integrations (see Shampine
(2008)).
Assuming independent observations, the likelihood function of θ = (A1, A2, µf , σf , q, τ) is
therefore given by

L(θ; {log10(n1), . . . , log10(nm)}) =
m∏
i=1

[
flog10(N)(log10(ni) ; θ)

]δi [1− Flog10(N)(log10(ni) ; θ)
]1−δi ,

(4)
where

δi =

{
1 if ni is a failure
0 if ni is a run-out .

3.1.4. Model IIb

We can also consider a random fatigue-limit model with the smallest extreme value (sev)
distribution as in Pascual and Meeker (1999):

µ(Seq) = A1 + A2 log10(Seq − A3) , if Seq > A3.

σ(Seq) = τ .

the density of log10(A3) is φ(t;µf , σf ).

the conditional density of log10(N) given A3 < Seq is φ(t;µ(Seq), σ(Seq)) ,

where φ(t;µ, σ) = 1
σ
exp

{(
t−µ
σ

)
− exp

(
t−µ
σ

)}
is the sev probability density function with

location parameter µ and scale parameter σ (Meeker and Escobar, 1998, Chapter 4). The
likelihood function has the same form as in equation (4). In other words, the conditional
fatigue life, N , and the fatigue limit parameter, A3, are modeled by a Weibull distribution.
Table 3 shows the maximum likelihood estimates and the maximum likelihood values
obtained for Model IIa and Model IIb. The estimated parameters for both models are
similar except for the parameters, σf and τ , which have smaller values with Model IIb.
As a consequence, Model IIb has a smaller maximum likelihood value. Since models IIa
and IIb have the same number of parameters, we can conclude that Model IIb is better
than Model IIa. It is thus sufficient to present the corresponding fit of Model IIb (Figure
5).
Figure 6 shows the probability density function for A3 corresponding to models IIa and
IIb.
In the next subsections, our goal is to compare the relative performances of the proposed
models that include an adequate formulation in terms of run-outs. As an initial step, we
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Figura 5: Model IIb fit of the 75S-T6 data set. The fitting of a random fatigue-limit model
for censored data has the effect that the estimated quantiles converge fast to an horizontal
asymptote. Unlike fatigue-limit models, the random fatigue-limit model has the property
that each estimated quantile approaches a different horizontal asymptote.

Cuadro 3: Maximum likelihood estimates for Model IIa and Model IIb.

A1 A2 µf σf q τ log(L∗)
Model IIa 6.53 -1.51 1.58 0.0473 0.4888 0.1447 -913.42
Model IIb 6.51 -1.47 1.60 0.0385 0.4886 0.0852 -907.31

explore the consistency of the fitted models by looking at the variability in the confidence
bands of the quantile functions of fatigue life.

3.2. Bootstrap confidence bands and confidence intervals

We obtain bootstrap confidence bands for the model fittings Ia, Ib and IIb, as illustrated
in Figures 2, 3 and 5, respectively. Stratified bootstrap algorithm 1 is implemented with
censored data. First, the data set is stratified on the basis of the cycle ratio, R. Then,
we sample independently from each stratum where each sample contains Smax, R,N and
the binary variable δ (see Efron (1981)). By repetition, we generate M = 200 bootstrap
data sets. For each data set, we obtain the maximum likelihood estimate and compute
the corresponding quantiles.
Figure 7 shows the median functions (blue curves) and the bootstrapped 95 % confidence
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Figura 6: Estimated probability density functions of the fatigue limit parameter, A3, for
models IIa and IIb.

Algorithm 1 Stratified bootstrap algorithm for censored data

1: set data = [data1, data2, . . . , datan]
2: for i = 1 : n do
3: draw |datai| samples with replacement from datai
4: let data∗i be the bootstrap stratum.

5: let data∗ = [data∗1, data
∗
2, . . . , data

∗
n] be the bootstrap data set.

6: find the maximum likelihood estimate θ∗ given data∗

7: compute the bootstrap quantiles
8: repeat steps (2 to 7) M times.

bands (black curves) for models Ia, Ib and IIb. Figure 8 shows the 0.05 quantiles (blue
curves) and the bootstrapped 95 % confidence bands (black curves). Table 4 provides the
bootstrap confidence intervals for the maximum likelihood estimates for these models.
Clearly, the random fatigue-limit model (Model IIb) provide the narrowest confidence
intervals for A1, A2 and q.

3.3. Model comparison

Using a classical approach, we compute some popular information criteria, such as Akaike
information criterion (AIC) Akaike (1992), Bayesian information criterion (BIC) Schwarz
(1978); Neath and Cavanaugh (2012) and AIC with correction Burnham and Anderson
(2002), which are based on the maximized log-likelihood values. Such measures take into
account both the goodness of fit and the complexity of the models in terms of the number
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Figura 7: 95 % bootstrap confidence bands for the median of fatigue life.
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Figura 8: 95 % bootstrap confidence bands for the 0.05 quantile of fatigue life. The 0.05
quantile is not as robust as the median, especially for Model Ib.

of parameters.
Table 5 contains the maximum log-likelihood values that correspond to the models intro-

15



Cuadro 4: 95 % bootstrap confidence intervals for the maximum likelihood estimates.

Model Ia
A1 A2 A3 q τ

(6.19, 8.79) (-2.88, -1.22) (31.01, 38.46) (0.487, 0.613) (0.355, 0.646)
Model Ib

A1 A2 A3 q B1 B2

(6.28, 7.45) (-2.05, -1.31) (33.66, 38.33) (0.460, 0.595) (3.48, 6.25) (-3.92, -2.31)
Model IIb

A1 A2 µf σf q τ
(6.23, 6.87) (-1.70, -1.30) (1.58, 1.62) (0.0275, 0.0497) (0.451, 0.515) (0.035, 0.123)

duced in Subsections 3.1.1 – 3.1.4 together with the classical information criteria compu-
tations. These classical evaluations of model uncertainty indicate that, despite its com-
plexity, Model IIb is preferable.

Cuadro 5: Classical information criteria show that Model IIb provides the best fit to the
75S-T6 data set.

Models Ia Ib IIa IIb
maximum log-likelihood -950.16 -920.51 -913.42 -907.31

Akaike Information Criterion (AIC) 1910.3 1853.0 1838.8 1826.6
Bayesian Information Criterion (BIC) 1922.5 1867.7 1853.5 1841.3

Akaike Information Criterion with correction 1911.1 1854.1 1839.9 1827.7

4. Bayesian approach

4.1. Model calibration

We consider now a Bayesian approach to study models Ia, Ib and IIb under an informative
priors scenario. We compute the maximum posterior estimate (analytically) using the
Laplace method and provide Markov chain Monte Carlo (MCMC) posterior samples.
The random walk Metropolis-Hastings algorithm (2) is used to generate MCMC samples.
We use a normal proposal distribution to perturb the current simulated vector, θc, and
generate a new perturbed vector, θp ∼ N(θc, diag(δ)), where δ is a vector of parameters
that controls the acceptance rate of the algorithm. After several attempts, we chose δ
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such that we could obtain a reasonable acceptance rate (see (Robert and Casella, 2009,
Chapter 6)).

Algorithm 2 Random walk Metropolis-Hastings algorithm

1: set an initial value for the chain: θc = θ0 and choose δ
2: compute a = loglikelihood(θc) + logprior(θc)
3: draw θp from N(θc, diag(δ))
4: compute b = loglikelihood(θp) + logprior(θp)
5: let H = min(1, exp(b− a)) and draw r from U(0, 1)
6: if H > r then
7: θc = θp
8: a = b
9: repeat steps (3 to 8) until L posterior samples are attained.

The algorithm is initialized as follows:

Model Ia: θ0 = (7.4,−2, 35, 0.56, 0.5) and δ = (0.1, 0.1, 0.1, 0.01, 0.05).

Model Ib: θ0 = (6.7,−1.6, 36.2, 0.55, 4.6,−2.9) and δ = (0.1, 0.1, 0.1, 0.01, 0.1, 0.1).

Model IIb: θ0 = (6.5,−1.5, 1.6, 0.04, 0.49, 0.085) and δ = (0.1, 0.1, 0.005, 0.001, 0.01, 0.01).

Each chain was run for 1, 010, 000 times, with a 10,000 iterations burn-in period and
every 50th draw of the chain kept. The MCMC posterior samples were summarized by
the Laplace-Metropolis estimator (see Lewis and Raftery (1997)), the empirical mean
and standard deviation and the estimated marginal densities. The marginal densities
were obtained by kernel density estimation (KDE) with a normal kernel function. The
bandwidth was chosen to be optimal for normal densities.
In attempting to provide an objective Bayesian analysis, we considered two different
scenarios (see our original paper Bayesian inference and model comparison for metallic
fatigue data, Computer Methods in Applied Mechanics and Engineering, vol.304 (2016),
pp.171-196) by choosing data-dependent proper priors Berger (2006). Here we describe
only the informative priors scenario, where normal priors centered around the maximum
likelihood estimates with arbitrary variance were considered for all the parameters except
the standard deviations that were assigned inverse-gamma priors.

4.1.1. Informative priors scenario

We considered the following informative priors that were induced from the maximum
likelihood estimates as explained previously.
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Model Ia: A1 ∼ N (7.4, 2), A2 ∼ N (−2, 2), A3 ∼ N (35, 2), q ∼ N (0.56, 0.5),
τ ∼ Inv-Gamma(0.5, 0.25).

Model Ib: A1 ∼ N (6.7, 2), A2 ∼ N (−1.6, 2), A3 ∼ N (36.2, 2), q ∼ N (0.55, 0.5),
B1 ∼ N (4.6, 2), B2 ∼ N (−2.9, 2).

Model IIb:A1 ∼ N (6.5, 2),A2 ∼ N (−1.5, 2), µf ∼ N (1.6, 0.1), σf ∼ Inv-Gamma(2, 0.1),
q ∼ N (0.49, 0.5), τ ∼ Inv-Gamma(1, 0.1).

Numerical Results - Model Ia
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Figura 9: Prior densities (red line) and approximate marginal posterior densities (blue
line) for A1, A2, q, τ and A3. The marginal posterior densities for all parameters are highly
concentrated around their unique mode, suggesting that the observed data, given the
assumed model, considerably increase our degree of belief about the range of the parame-
ters. The high concentrations of q and τ are especially noticeable. The estimated marginal
posterior of the fatigue limit parameter, A3, is left-skewed although the prior was assumed
to be a normal distribution.

Maximum posterior estimates shown in Table 6 are similar to the maximum likelihood
estimates obtained for Model Ia (Table 1). Figure 9 and empirical standard deviations
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Cuadro 6: Maximum posterior estimates for Model Ia.

Estimator A1 A2 A3 q τ
Laplace 7.39 -2.01 35.03 0.563 0.523

Laplace-Metropolis 7.46 -2.07 34.92 0.561 0.524

Cuadro 7: MCMC posterior empirical mean estimates with their standard deviations.

A1 A2 A3 q τ
Mean 7.57 -2.13 34.53 0.559 0.544
SD 0.41 0.28 0.88 0.020 0.048

given in Table 7 show that the fatigue limit parameter, A3, is the most uncertain pa-
rameter whereas q is the least uncertain parameter. Figure 9 also shows that the data
are informative for all the parameters because there is a contraction between the prior
densities and the posterior densities. Correlation coefficients presented in Table 8 and
Figure 10 show that A1 and A2 are approximately linear dependent. We can therefore
reduce the number of parameters in Model Ia by one parameter. These parameters are
also highly correlated with the fatigue limit parameter, A3. On the other hand, there is
a weak linear relationship between q and the parameters A1, A2 and A3. Moreover, the
standard deviation, τ , has no notable correlation with any parameter.

Cuadro 8: Correlation coefficients for each pair of parameters in Model Ia.

A1 A2 A3 q
A2 -0.980 — — —
A3 -0.860 0.799 — —
q -0.385 0.365 0.384 —
τ -0.005 0.003 0.050 0.073
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Figura 10: Contour plots of the estimated bivariate densities for each pair of parameters
in Model Ia. A strong correlation appears between A1 and A2 and they also appear to be
linearly dependent. The fatigue limit parameter, A3, is highly correlated with A1 and A2.

Numerical Results - Model Ib

Cuadro 9: Maximum posterior estimates for Model Ib.

Estimator A1 A2 A3 q B1 B2

Laplace 6.72 -1.57 36.21 0.551 4.56 -2.89
Laplace-Metropolis 6.78 -1.61 36.20 0.552 4.43 -2.83

Maximum posterior estimates given in Table 9 are similar to the maximum likelihood
estimates obtained for Model Ib (Table 2). Similarly to Model Ia, Figure 11 and Table
10 show that the fatigue limit parameter, A3, is the most uncertain parameter whereas
q is the least uncertain parameter. However, the uncertainties have been reduced for
A1, A2 and A3 when compared with Model Ia. Figure 11 shows again that the data are
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Figura 11: Prior densities (red line) and approximate marginal posterior densities (blue
line) for A1, A2, q, B1, B2 and A3 . The estimated posterior densities for all parameters
are more concentrated than the prior densities, which means that the data are informa-
tive. Again, the estimated posterior of q is highly concentrated. Allowing a non-constant
variance has the effect of reducing the uncertainties of A1, A2 and the fatigue limit para-
meter, A3. The estimated marginal posterior of the fatigue limit parameter is left-skewed
although the prior was assumed to be a normal distribution.

Cuadro 10: MCMC posterior empirical mean estimates with their standard deviations.

A1 A2 A3 q B1 B2

Mean 6.87 -1.66 35.63 0.544 4.44 -2.81
SD 0.23 0.14 0.60 0.022 0.53 0.31

informative for all the parameters as previously explained. The marginal posterior of
the fatigue limit parameter, A3 is left-skewed similar to the profile likelihood estimate.
Correlation coefficients shown in Table 11 and Figure 12 show that A1 and B1 are almost
perfectly correlated with A2 and B2, respectively. Thus, we can consider a fatigue limit
model with non-constant variance with only four parameters, which is the same number of
parameters in the logarithmic fit. The fatigue limit parameter in Model Ib has a moderate
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linear relationship with A1, A2 and q whereas the fatigue limit parameter in Model Ia has
a strong linear relationship with A1 and A2 and a weak linear relationship with q.
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Figura 12: Contour plots of the approximate bivariate densities for each pair of parameters
in Model Ib. There are two strong correlations between A1 and A2 and between B1 and B2.
Such strong correlation suggests linear dependence; it is therefore possible to remove two
parameters from Model Ib. The fatigue limit parameter, A3, shows a moderate correlation
with A1, A2 and q. Allowing a non-constant variance has the effect of increasing the
correlation between q and the fatigue limit parameter, A3.
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Cuadro 11: Correlation coefficients for each pair of parameters in Model Ib.

A1 A2 A3 q B1

A2 -0.993 — — — —
A3 -0.610 0.592 — — —
q -0.384 0.396 0.658 — —
B1 -0.301 0.308 0.017 -0.177 —
B2 0.300 -0.306 -0.011 0.188 -0.997

Numerical Results - Model IIb
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Figura 13: Prior densities (red line) and approximate marginal posterior densities (blue
line) for A1, A2, q, τ, µf and σf . The posterior densities for all parameters are more con-
centrated than the prior densities, which means the data are informative. The high con-
centrations of the location and scale parameters, µf and σf , are particularly noticeable.
The random fatigue-limit model has the effect of considerably reducing the uncertainties
of A1, A2 and τ .

Maximum posterior estimates presented in Table 12 are similar to the maximum like-
lihood estimates obtained for Model IIb (Table 3). Figure 13 and Table 13 show that the
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Cuadro 12: Maximum posterior estimates for Model IIb.

Estimator A1 A2 µf σf q τ
Laplace 6.51 -1.47 1.60 0.0387 0.488 0.082

Laplace-Metropolis 6.53 -1.49 1.60 0.0386 0.485 0.080

Cuadro 13: MCMC posterior empirical mean estimates with their standard deviations.

A1 A2 µf σf q τ
Mean 6.58 -1.52 1.60 0.0424 0.488 0.087
SD 0.20 0.12 0.012 0.007 0.018 0.023

location and scale parameters, µf and σf , are the least uncertain parameters. Moreover,
the uncertainties have been reduced for A1, A2 and q when compared with Model Ia and
Model Ib. Figure 13 shows that the data are very informative for all the parameters be-
cause there is a strong contraction between the prior densities and the posterior densities.
Similarly to Model Ia, Table 14 and Figure 14 show that A1 and A2 are approximately
linear dependent, and therefore we can reduce the number of parameters for Model IIb by
one parameter. The location parameter, µf , is strongly correlated with A1 and A2 whe-
reas σf is moderately correlated with A1, A2 and µf . There is a weak negative correlation
between τ and σf and a weak positive correlation between τ and q.

Cuadro 14: Correlation coefficients for each pair of parameters in Model IIb.

A1 A2 µf σf q
A2 -0.986 — — — —
µf -0.777 0.708 — — —
σf 0.447 -0.404 -0.526 — —
q -0.045 0.090 -0.062 -0.145 —
τ 0.034 -0.022 0.042 -0.396 0.321

4.2. Model comparison

We now analyze more closely comparisons among models Ia, Ib and IIb.
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Figura 14: Contour plots of the approximate bivariate densities for each pair of parameters
in Model IIb. Again, a strong correlation appears between A1 and A2. Also, the parameter
µf has a relatively strong correlation with A1 and A2. The random fatigue-limit model
has the effect of reducing the correlations between q and the parameters A1 and A2.

4.2.1. Bayes Factor

We adopt a traditional Bayesian approach by estimating the Bayes factor of Model A
against that of Model B, which is defined as

FB ,A :=

∫
LB(θB; y)ρB(θB)dθB∫
LA(θA; y)ρA(θA)dθA

=
pB(y)

pA(y)
,

where ρA(θA) and ρB(θB) are the prior densities, and pA(y) and pA(y) are the marginal
likelihoods (Congdon, 2006, Chapter 2).
Common methods to estimate Bayes factors DiCiccio et al. (1997); Lewis and Raftery
(1997) are applied to compare the fitted models and to rank their plausibility. Fast preli-
minary estimates of the log marginal likelihoods were obtained through the application of
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the Laplace approximation. Then, the log marginal likelihoods were computed using the
Laplace-Metropolis estimator, which is based on the MCMC posterior samples together
with the Laplace approximation.
In both cases, the approximation of the log marginal likelihood log(p(y)) is given by

P

2
log(2π) +

1

2
log(|H∗|) + log (ρ(θ∗)) + log (L(θ∗|y)) ,

where P is the dimension of the vector θ, θ∗ is the maximum posterior estimate and H∗

is the inverse Hessian of the negative log posterior.
In the Laplace estimator, θ∗ and H∗ are numerically approximated by means of the Broy-
den - Fletcher - Goldfarb - Shanno (BFGS) algorithm. The Laplace-Metropolis estimator
uses the MCMC posterior samples to find the maximum posterior estimate, θ∗, and ap-
proximate, H∗, by the empirical covariance matrix.

4.2.2. Predictive Information Criteria for Bayesian Models

In this section, we compare models by measuring their prediction accuracy. We estimate
the prediction accuracy using deviance and Watanabe-Akaike information criteria as well
as cross-validation.

Log pointwise predictive density (lppd)
The general method to estimate the prediction accuracy of a certain model is through
the log predictive density, log ρ(y|θ) = logL(θ; y), where y is a new observation. An
overestimate of the log predictive density can be obtained by using the observed
data, {yi}ni=1. It is an overestimate because the observed data were used first to
infer θ. In our Bayesian approach, θ is summarized by the MCMC posterior samples,
{θm}Sm=1, and therefore the log pointwise predictive density estimate is given by

lppd =
n∑
i=1

log

(
1

S

S∑
m=1

ρ(yi|θm)

)
, (5)

where S should be “large enough”Gelman et al. (2014); Vehtari and Gelman (2014).

Deviance information criterion (DIC)
DIC can be considered as a Bayesian generalization of the AIC by replacing the
maximum likelihood estimate by the posterior mean and computing the effective
number of parameters, pDIC , as follows:

pDIC = 2

(
logL(θ̄)− 1

S

S∑
m=1

logL(θm)

)
,
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where θ̄ is the posterior mean Gelman et al. (2014). Then, the deviance information
criterion is given by

DIC = −2
(
logL(θ̄)− pDIC

)
.

Watanabe-Akaike information criterion (WAIC)
WAIC or widely applicable information criterion is a stable Bayesian predictive
measure that approximates the leave-one-out cross-validation (see Gelman et al.
(2014),
Vehtari and Gelman (2014); Watanabe (2010)) and is defined by

pWAIC = 2
n∑
i=1

(
log

(
1

S

S∑
m=1

ρ(yi|θm)

)
− 1

S

S∑
m=1

log ρ(yi|θm)

)
,

WAIC = −2(lppd− pWAIC).

K-fold cross-validation
Cross-validation is the most popular yet computationally expensive method to esti-
mate a model’s predictive accuracy. We consider the K-fold cross-validation where
the data are randomly partitioned into K disjoint subsets, {yk}Kk=1. Then, we de-
fine {y(−k)} = {y1, . . . ,yk−1,yk+1, . . . ,yK} to be a training set. For each training
set, we compute the corresponding posterior distribution, p(θ|y(−k)). Then, the log
predictive density for yi ∈ yk is computed using the training set {y(−k)}, that is:

lpdi = log

(
1

S

S∑
m=1

ρ(yi|θk,m)

)
, i ∈ k,

where {θk,m}Sm=1 are the MCMC samples of the posterior p(θ|y(−k)). Finally, we sum
to obtain the expected log predictive density (elpd):

elpd =
n∑
i=1

lpdi.

The K-fold cross-validation (with K = 5 or 10) is usually used instead of the leave-
one-out cross-validation, which is the most computationally exhaustive type of cross-
validation (see (Izenman, 2008, Chapter 5) and Vehtari and Gelman (2014)).

In the next Subsection, we present the main numerical results from applying the techniques
described in Subsections 4.2.1 and 4.2.2 for Models Ia, Ib and IIb under the predefined
scenario.
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Cuadro 15: Log marginal likelihoods (Bayes factors) show very strong evidence that Model
Ib is better than Model Ia and that Model IIb is better than Model Ib. The predictive
information criteria and the 5-fold cross-validation show that Model IIb also has better
predictive accuracy than do Model Ia and Model Ib.

Models Model Ia Model Ib Model IIb
Log marginal likelihood (Laplace) -963.07 -940.18 -932.55

Log marginal likelihood (Laplace-Metropolis) -963.16 -937.06 -923.68
Log pointwise predictive density (lppd) -949.56 -920.51 -907.85
Deviance information criterion (DIC) 1909.6 1851.8 1826.5

Watanabe-Akaike information criterion (WAIC) 1911.3 1853.1 1825.9
5-fold cross-validation elpd -955.42 -927.07 -913.80

4.2.3. Numerical Results (Informative priors scenario)

Table 15 shows that Model IIb under the informative priors scenario is preferable by the log
marginal likelihood and the predictive information criteria. The Laplace method appears
to underestimate the log marginal likelihood for Model IIb. This is expected because of
the complex likelihood function of Model IIb and because the Gaussian approximation
does not always provide a good estimation. Table 15 also shows consistency with the
classical information criterion presented in Table 5.

5. Conclusions and future work

We calibrated models of various complexity that were designed to account for right-
censored data by means of the maximum likelihood method. We used a data set described
in Section 2 for this purpose. The robustness of the estimation of the quantile functions
has been assessed by computing bootstrap confidence intervals for samples stratified with
respect to the cycle ratio.
We then considerably enlarged the scope of our study by considering a Bayesian approach.
Any prior distribution, which is suitable to describe the available knowledge on the phy-
sical parameters, can be easily incorporated into our Bayesian computational framework
that provides a simulation-based posterior distribution.
To decide which model could be considered more reliable for deployment, first we compu-
ted classical measures of fit based on information criteria. Then, the Bayesian approach
for model comparison was applied to determine which model would be preferred under
any prescribed a priori scenarios. Here we examined the informative priors scenario. This
approach included very different techniques ranging from those based on the estimation
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of the marginal likelihood to those based on predictive information criteria, whose imple-
mentation requires the use of cross-validation techniques.
The classical approach and the Bayesian approach for model comparison have provided
evidence in favor of Model IIb given the 75S-T6 data set described in Section 2. Model IIb
assumes that both fatigue life and the fatigue limit parameter follow a Weibull distribution
and the expected value of the fatigue limit parameter, A3, is 39.88 ksi.
An integrated set of computational tools has been developed for model calibration, cross-
validation, consistency and model comparison, allowing the user to rank alternative sta-
tistical models based on objective criteria.
A natural extension of this work is the study of fatigue life prediction of metallic materials
with small notches. Several predictors of damage accumulation, i.e. phenomenological
models constructed for the purpose of generalizing sets of experimental data obtained
in fatigue tests of mechanical or structural components subjected to cyclic loading, have
been recently proposed in Szabó et al. (2016), together with a schematic procedure to
provide their objective ranking. Stochastic models for crack initiation will be developed,
at a first instance, in a realistic three-dimensional setting on the basis of the S-N curves
that must be calibrated for any selected type of metallic material.
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