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Estimation of the distribution function using auxiliary information

Juan José Goyeneche

Major Professor: Dr. Wayne A. Fuller

lowa State University

The problem of estimating the finite population distribution function of a variable
y is studied. The framework is one in which auxiliary information is available for each
element in the population, and is similar to the framework used by Chambers and
Dunstan (1986). In this study we introduce a new estimator, called the local-residuals
estimator, of the finite population distribution function with auxiliary information. The
local-residuals estimator is based on the distribution of the residuals from the regres-
sion of the variable of interest, y, on the vector of auxiliary variables, x. One criticism
of the estimator proposed by Chambers and Dunstan (1986) is that the performance
of the estimator is poor when the superpopulation model is incorrectly specified. The
local-residuals estimator is designed to be robust against model misspecification. The
asymptotic properties of the local-residuals estimator are studied under different su-
perpopulation models and the estimator is shown to be model consistent for the finite
population distribution function. The conditions for asymptotic normality of the estima-
tor are established and model consistent estimators of the variance of the local-residuals
estimator are proposed. We also suggest an estimator of the superpopulation distribu-
tion function based on the local-residuals estimator. A Monte Carlo study compares
the performance of the proposed estimator with alternative estimators presented in the

literature.



1 INTRODUCTION

The problem of distribution function estimation appears when we are interested in
knowing the population proportion of values of a variable that are less than or equal
to a certain value, or set of values. Soil scientists may be interested in estimating the
distribution of clay percent in the soil. Nutritionists may want to know the proportion
of the population that consumes 30% or more of their calorie intake from saturated
fat. Certain functions of the distribution function are also of interest, such as quantiles
and functions of quantiles. A method of distribution function estimation similar to the
one presented in this work is being applied to the estimation of Soil Components in
the “Major Land Resource Area 107 Soil Survey Pilot Project” as described in Abbitt,

Goyeneche and Schumi (1998).

In many situations auxiliary information is available. There are different types of
auxiliary information. The values of auxiliary variables may be known for each element
in the population, or for a large sample of the population. In other cases, only the

population means of the auxiliary variables are known.

In this work, an estimator of the cumulative distribution function is presented that
uses auxiliary information and local smoothing of the conditional distribution function,
conditional on the auxiliary information. The notation and models used, and a review
of the literature are presented in Chapter 2. The properties of the estimator are studied
in Chapter 3. Monte Carlo results under different superpopulation models are presented

in Chapter 4. Conclusions are presented in Chapter 5.



2 PREVIOUS WORK

2.1 Framework and Models

2.1.1 Notation

A finite population is a finite collection of elements or units. The number of elements
in the population is denoted by N and is called the population size. Assume that the
units of the finite population are identifiable and that a label is assigned to each unit.
The set containing the N labels for the population elements is called the sampling frame
and denoted by U. Without loss of generality, assume that U = {1,2,... ,N}. When
referring to the “unit of the population with label 57, the shorter expression “unit ;7 is

normally used.

Associated with each unit j in the population, there is a vector y; of characteristics.
Let F, = {y1,...,yn~n} be the entire set of N vectors. Sometimes, there is another
vector x; of auxiliary information associated with unit j. Let F, = {xy,... ,xn} be the

set containing the auxiliary information for the N units in the finite population.

A sample is a subset of units of the finite population. Let A denote the subset of
labels from U that are in the sample. The values for the vectors y;, 7 € A, are observed.

Often we refer to the set A as the sample, with the understanding that A is the set



of labels of the units in the sample. The complement of the sample with respect to
the finite population, the set of units that are not selected, is denoted by A° = U — A
(formally, A° is the set of labels of the nonselected units). The number of elements in
A, denoted by n, is called the sample size. Let A be the set of all possible samples from
U. The sample design is a function p(-) : A — [0, 1] such that p(a) = P(A = «a) for any
a € A, where p(a) is the probability that the sample with labels in the set a is selected.
The probability that unit j is selected in the sample is called the first order inclusion
probability, or just inclusion probability, and is denoted by 7;, where

m=P(jeA)= > pla)

a€A:j€a

and the sum is taken over all samples that contain unit j. Similarly, higher order
inclusion probabilities can be defined. For instance, the second order inclusion probability
is

T=PGleA N keA)= Y pla)
a€A:j,k€a

where the sum includes all samples that contain both j and k.

The indicator function I(-) is widely used in sampling, and is defined as

1 if [ is true

I(l) =
0 if [ is false

where [ is some logical expression. A particular use of the indicator function is in defining
the indicator variable I; as: I; = I[(j € A). That is, [; = 1 when unit j has been selected

and [; = 0 otherwise.

A finite population parameter § is some function of F, and F,, 0 = 6(F,, F.). An
estimator O of 0 is some function of the observed information. If F. is known, that is,

x; is known for all j € U, then

0=0{y,;.j € A}, F.). (2.1.1)



More details about different types of auxiliary information are given in Section 2.1.3.

Let us assume that y is scalar, or that we concentrate our attention on just one
characteristic, y. The finite population distribution function for the variable y is
Fy(i) = N""Y Iy <) (2.1.2)
€U
for y € R. Unless otherwise noted, the terms distribution function and finite population
distribution function will be used as synonyms. Assume F, is known. An estimator of

the distribution function expressed as a function of the observed y information and of

F 1s

Fn(9) = Fn(i, {y;. 5 € A}, F.). (2.1.3)

2.1.2 Asymptotic considerations

Since the population under study is intrinsically finite (of size N), asymptotic calcu-
lations are based on a sequence of populations and samples with increasing sample size,
n, and increasing population size, N (see Isaki and Fuller, 1982). A sequence of finite
populations, which implies sequences of Uy, Fyn, Fun, Ax, Ax and ny are defined for
N =1,2,.... The asymptotic properties of an estimator é\N are then defined in terms

of this sequence.

We may treat F,n as a set of fixed quantities, or consider it to be a particular
realization of N random vectors Y;. The set of conditions that determines the joint
distribution of Yy,..., Yy is called the superpopulation model. See Cassel et al. (1993,
page 80). The set F,n of auxiliary information is considered fixed in our discussion. It
may be the case that F,n is a part of the superpopulation model, but unless otherwise

stated, the auxiliary information will be considered fixed.



Note that in the superpopulation context,

e when referring to a particular finite population, the population includes a set
of units with their labels Uy, the auxiliary information F,n, and a particular
outcome for Yq,...,Yy. We will sometimes use F  to denote a particular finite

population, where Fy = {Uny, Fon, Fyn}-

o treating F,n as a set of fixed quantities is equivalent to considering a superpopu-
lation model, but restricting our interest to a particular realization of the model,
the realization that produced F,n. We may, then, use the superpopulation model
approach in general, and condition on Fn when interested in a particular finite

population.

When we assume that the finite population is a realization from the superpopula-
tion and assume the sample is selected according to a sampling design, the probability

structure contains both the sampling probability and the superpopulation model.

The properties of an estimator can be considered with respect to a particular finite
population. The estimator é\N is design unbiased for the finite population parameter 6y
if

E(On | Fn) = 0Ox,
where the notation denotes conditioning on the particular finite population. Hence,
the expectation is taken with respect to the sample design. For each sample ¢ € Ay,
é\Na is based on the information from those units contained in the sample a, and the

expectation is

By | Fx) =Y Ona pla).

GEAN



The estimator é\N is asymptotically design unbiased for the finite population parameter
Oy if
lim E(fy —Ox | Fn) =0

N—oo

The estimator é\N is design consistent for the finite population parameter 0y if
lim P(|fx — Oy > ¢ | Fn)=0
N—oo

for every ¢ > 0.

The properties of an estimator can also be considered under the superpopulation
model, for a particular sample Ay. The estimator é\N is model unbiased for the super-

population parameter 6 if

E(Oy | Av) =10

where the expectation is with respect to the model that generates Y, and é\N is a
function of Y, for 5 € Ax. The estimator é\N is asymptotically model unbiased for the

superpopulation parameter 6 if
lim E(fy —0 | Ay) = 0.
N—oo
The estimator é\N is model consistent for the superpopulation parameter 6 if
lim P(|fy — 0] > ¢ | Ay) =0
N—oo

for every ¢ > 0.

2.1.3 Auxiliary information

Use of auxiliary information, either at the design stage or at the estimation stage,

to improve the precision of estimates is very common in survey sampling. Auxiliary



information can take different forms. The following is a nonexhaustive list of possi-
ble situations where the auxiliary information in the form of an auxiliary vector x is

available:

for each unit in the population the value of the auxiliary vector x is known.

for multiphase samples, the value of x is observed for a large sample.

e summary information is known for x in the form of a histogram or frequency count

for the finite population.

only the population mean or total of x is known.

Usually, multiple sources of information are available for the auxiliary variables that
form the vector x. For instance, the values for a subgroup of the auxiliary variables are
available for all units in the population, while the values for the rest of the auxiliary

variables are only known for units in a sample larger than A.

2.1.4 Superpopulation model

Assume that the finite population (F,n) is generated by a superpopulation model of

the form
Ykzxﬁgﬁ—l—h(xk)Uk, k:1,2,... ,N, (214)

where 3 is an unknown parameter, h(-) > 0 is a known function that accounts for
heteroescedasticity, and the Uy are independent identically distributed random variables
with zero mean and distribution function G/(uv). We will use the shortcut notation hj =

h(xy) sometimes. The set F,n is assumed fixed. A realization of the superpopulation



model random variables, denoted by Y7, Y3, ..., Yn, corresponds to a particular finite

population Fyny = {y1,y2,.-. ,yn}-

The superpopulation distribution function of Y is

Fi)=PY <y) = N PY<y|x=x) (2.1.5)
€U
= N E{I(Yi <) |x=xi.
€U

Note that

P(Y <) =P(Y <y | Fon),

since the set F,y is assumed fixed. The superpopulation distribution function (2.1.5) can
be seen as the model expectation of the finite population distribution function defined

in (2.1.2).

2.2 Distribution Function Estimation without Auxiliary Infor-

mation

The Horvitz-Thompson estimator of Fy(y) is
Fr(g) = { Y a7} Y S a iy <)) (22.1)
jeA jeA

where ; is the inclusion probability for unit j. Estimator (2.2.1) is the ratio of the
Horvitz-Thompson estimator of the proportion of units in the finite population that
have values of y less than or equal to v, { D ieh W]*l[(yj < y)}, to the Horvitz-Thompson
estimator of the population size, {E]‘EA 7T;1}. In some designs the denominator part
is equal to NV for any sample in the sample space A. Note that the Horvitz-Thompson

estimator (2.2.1) of the distribution function does not use auxiliary concomitant variables

at the estimation stage. Sometimes auxiliary information is used at the design stage of



a sampling survey, and for such designs, the auxiliary information may be implicit in

the inclusion probabilities 7; that appear in (2.2.1).

Francisco and Fuller (1991) considered the problem of distribution function and quan-
tile estimation for complex designs. Restrictions on the sampling design are specified and
limiting results for the estimator (2.2.1) are established for stratified cluster sampling. A
method for constructing confidence intervals for superpopulation quantiles based on test
inversion of the distribution function is presented. An expression for the joint limiting

distribution of a vector of sample quantiles is given.

2.3 Distribution Function Estimation using Auxiliary Informa-

tion

Chambers and Dunstan (1986) introduced a model based method to incorporate
auxiliary information from a variable & when its value is known for all units in the

population. Chambers and Dunstan assumed a superpopulation model of the form of

model (2.1.4), with h(x) = #'/2. The resulting model,
Yi = 248 + 2}/ Uy, (2.3.1)

corresponds to the customary “ratio” model in survey sampling. The distribution of the
random variables Y; and U} are specified in the superpopulation model for £ € U. A
realization of the Uy generates N particular values for the residuals that are denoted
by i, ug, ..., un. A set of N residuals uy,us,...,uny and the auxiliary information

Ty, Tq,..., 2N generate a set of values of y, that is, a particular finite population Fyy.

The distribution function Fx(y) defined in (2.1.2) can be written as

Fu(g) = N[ 0w <) + 3 1y <) (2:3.2)

JEA 1EAC
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where the unknowns in formula (2.3.2) are in the last term of the sum. Letting h; = h(x;),
Chambers and Dunstan estimate the last term of (2.3.2) by observing that under model
(2.3.1)

E[I(Y;<y) |z =a] =PlYi <y v =] = G(h7'[§ — 2:])

(2.3.3)
where G/(+) is the distribution function of U defined in (2.1.4). An estimator of the term
>icse [(yi < 9) can be derived by estimating Y, ,. G(h7'[y — 2;3]). Chambers and
Dunstan presented the following estimator:

Fep(i) = N7 [ 3105 <) + 32 Gulh i = b)) (23.4)
JEA 1€A°

where

() (S

jeA
is an estimator of 3, and G, is a sample-based estimator of the distribution function of
U in (2.3.1). The GG, is a function of the sample residuals, u; = Y; — x;b,, and is equal
to
Go(h7' g = wiba)) = 7Y T(h'[Y; = 23ba) < b7 [ — wiba])
jeA
= ™'Y I(wiby + hih Y = 2ba] < 3).
jeA
The Chambers and Dunstan Monte Carlo study, done with a population of 338
sugar cane farms that seems to follow model (2.3.1), shows that the estimator ﬁcp can
be considerably more efficient than the design based estimator (2.2.1) when the model

is true.

Model based asymptotic results for F\CD are based on Randles (1982). Chambers
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and Dunstan study the estimation error for Fep under model (2.3.1), where the error is

Fop(§) = Pu(g) = N7 | 3 Ga(h7 [ = wiba]) = D 107 <)

1€AC 1€AC

(2.3.5)

Note that the first term on the right hand side of (2.3.5) depends on the Y random
variables of the sample,

G (b g —wba]) = > 0Tt Y (A — b < A — wiba)),

€A 1€AC JEA
while the second term on the right hand side of (2.3.5) depends on the Y of the nonsample
units. If we condition on A, the sample indices, the two terms in (2.3.5) are independent

under the model. Let

F(g,b,) = (N —n)™! Z G (hi 'y — 2iba)) (2.3.6)
and
Fg) = (N =m)™ 3 (i <), (2.3.7)

where FX(y,b,) is the part of the estimation error that depends on the sample, and
F.(y) is the proportion of nonselected units with Y; less than or equal to y. Both
random quantities, F*(y,b,) and F,.(y), are restricted to be between 0 and 1. Then,
the estimation error ﬁcp(y') — Fn(y) can be seen as a difference between two random

variables that are conditionally independent under the model multiplied by N=*(N —n),
Fop(i) = Fx(9) = NN = n) [F7(9,b.) = Fo(§)].
The conditional variance of the estimation error (2.3.5) is then
fea . . 1 2
V(Fen(3) — Fi(i) | &) = {N1 O =) bV (5,00 [8) + V(EG) [ A) )

:{1_nN—1}2{v(F: (5:60) | &) + V(F(5) | 4) },
(2.3.8)
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because F*(y,b,) and F,.(y) are conditionally independent given A. Chambers and
Dunstan denote the first variance on the right hand side of (2.3.8) as W7(y, #) and the

second variance on the right hand side of (2.3.8) as W,.(y, ), that is,
Wi(g, 8) = V(F(9,b,) | A),

and

W.(5,8) = V(F.(y) | A).

Based on Theorem 2.13 in Randles (1982), Chambers and Dunstan write the first vari-

ance on the right hand side of (2.3.8) as

V(F(9,6.) | A) = W23, 8) = D.(9,8) V*(4,8) DL(3,8),

where D,.(y, 3) is the row vector

D, (5,8) = (10" (V =)™ 30 3 A0y ey = b g (bl — w:8)) })

jeh iche

and V*(y, 3) is the conditional variance matrix of the vector (F*(y, 3), bn>/,
V*(§,8) = VI(F(5,8), b.)" | A] = (V).
The elements of V*(y,3) are
Vo= ot V=) 230 ST G min (' — i8], b — ax) )
1€AC keAc
T

1€AC
Vi, = V5= {Zh;zxﬂ_ln_l(l\f—n)_lth]ﬂxi X
JEA JEA 1€AC
x I h;lm—xm I+ hih 'Y, — ;8] < §) | &)
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The second variance on the right hand side of (2.3.8) is

V(F(y) |A) = W,(y,3)

= V([N =n]"" Y I[Yi <] | A)

1€ AC
=(N=n) > V{IY;<yl | A)
1€ AC
= (N =n)2 > G(h [y — 2:B8) {1 — G(h7'[y — x:8]) }.
1€ AC

since the Y; are conditionally independent given A, V([[Yi < 9] ‘ A) = V([[Yi < y]) =
P(Y: <)L = P(Y; < §)] and P(Y; <g) = G(h' [y — 2:6]).

Chambers and Dunstan use the following set of assumptions to find the limiting

distribution of the estimation error (2.3.5). The notation of Section 2.1.2 is used.

(CD.1) limy_yoo ny N~ = ¢, where ¢ € (0,1),

(CD.2) G(u), the distribution function of U in model (2.3.1), is differentiable, with

derivative g(u),

(CD.3) there exist My, My < oo, such that |xx| < My and hy < My for all N and all
ke UN,

(CD.4) for arbitrary b, 0 < limy_. F*(y,b) < 1, where F*(y,b) is defined in (2.3.6),

(CD.5) b, is asymptotically normal under (2.3.1), that is, [V/(b,)]""/%[b, — 3] converges

in distribution to a standard normal distribution as N — oo.

If conditions (CD.1) through (CD.5) hold, the Chambers and Dunstan result is that

~

{02 (W) + W0 8] ) Benti) - Extiy | &) — N,
(2.3.9)
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in distribution. Note that there are no direct assumptions on the sample design, only

on the properties of the sample.

Chambers and Dunstan consider the possibility of misspecification of the model when
the mean part of (2.3.1) holds but the variance function is h,(x) # h(x). In general,
ﬁcp(y') — Fn(y) is still asymptotically normal but with nonzero mean. The asymptotic
bias is close to zero if the sample is such that [A(z;)ha(@;)][l(2;)ha(z;)]7" is approxi-

mately one for all 7 € A°.

Dunstan and Chambers (1989) extend the model based approach to the case when
only histogram summary information is known for the auxiliary variable. The distri-
bution function estimator and an estimator of its variance are adapted to the case of
“limited information”. Dunstan and Chambers’ Monte Carlo results suggest that the
“limited information” estimator is almost as efficient as the corresponding “full infor-
mation” one, and that the confidence intervals generated by either of these model based
methods have better coverage properties than confidence intervals for the design based

estimator (2.2.1).

Rao, Kovar and Mantel (1990) suggested design based ratio and difference estima-
tors of the distribution function that also make use of the auxiliary information at the
estimation stage. Rao, Kovar and Mantel emphasize that the Chambers and Dunstan
estimator is not design unbiased and that it is not robust against model misspecification.

The variable I(x;3 < y) is used as an auxiliary variable for I(y; < y). The customary

ratio and difference estimators are then defined as:

Frsn) = N S a1 <) { @i <} {3 1w <)

JEA JEA €U
(2.3.10)
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and

Fricara(y {Zﬂ_ll + {Z[(:pﬁgyf)—Zw]*l[(xjgéy')}}

JEA €U JEA
(2.3.11)

where 3 = (> ienT; mthy y]x]][z eu ™ h72a3]7!. When the variance function h(z)
is specified to be h(z) = z'/2, 3= [E]EAW{lxj]_l[zjeijlyj]. Estimator (2.3.11)
is design unbiased, and estimator (2.3.10) is approximately design unbiased. The to-
tal variation of the N quantities ;3 is in general smaller than the total variation of
y;. Estimators (2.3.10) and (2.3.11) are not model unbiased. If model (2.3.1) holds
BY] = 8, but B[V < §)] = P(Y; < §) # I(E[V] < §) = I(2:8 < §). Therefore

ElFricare(§) — Fn(9) | Al # 0 and E[Fricara(§) — Fn(§) | Al # 0. Also,

lim N7' ) I(zf<g)# lim Fa(y),
n,N—00 ; n,N—00
€U N

unless model (2.3.1) fits exactly with V/(U) = 0.

An asymptotically design unbiased, model unbiased estimator is based on the distri-
bution of U. Assume that for : € U we know the quantities
Gi= N T(hi [ye — wxba) < b7 — 2iba]),
kelU
that is, the finite population distribution function of u evaluated at A7 '[y — z;b,]. A
design unbiased, asymptotically model unbiased estimator of Fy(y) is then

Frkaman(¥) = N_1<Z7T;1[(yj <y + {Z Gy — Zﬁy‘_lGi})

JEA €U JEA
(2.3.12)

Estimator (2.3.12) is a difference estimator that uses the auxiliary variable G;, hence,

estimator (2.3.12) is design unbiased. If model (2.3.1) holds,

Zw_ll ‘AN :E<Z7T;1G

JEA JEA
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thus, estimator (2.3.12) is model unbiased. The G; can not be computed, since [ is
unknown, and we only know y; for 5 € A. A feasible estimator of Fly is constructed by

using

o= { ) {00 = 2B+ < )

JEA JEA

as an design consistent estimator of (; and

Glre = { Z(%’j/m)_l}_l{ > (i fm) T I (hih Ty — 28) + 2B < y)}
JEA JEA
as a design consistent estimator of (i;, conditional on i € A, where 7;;/m; is the con-
ditional probability of selecting units ¢ and j given that unit ¢ has been selected. The
estimator,

F\RIx'Mdm(y) = N_l{ Zﬁflf(yj <y) + <Z G — Zﬁj_l@'c>}

JEA €U JEA
is design consistent and asymptotically model unbiased.

Rao, Kovar and Mantel used two populations in a Monte Carlo study: the “Chambers
and Dunstan” population, the population with 338 sugar cane farms that seems to follow

(2.3.1), and the “Hansen, Madow and Tepping” population generated by the model
Yi = 0.40 + 02524 + /Uy, (2.3.14)

where the U are independent and identically distributed with zero mean. This model
“was designed to make it not distinguishable from model (2.3.1)” (see Hansen et al.,
1983). When evaluated at the 25th, 50th and 75th population quantiles (y, : Fn(ys) =
a, a = 0.25,0.50,0.75), estimator (2.3.13) performs better than estimators (2.3.10)
and (2.3.11) in both populations. The Chambers and Dunstan estimator (2.3.4) shows
larger bias than estimator (2.3.13) (even in the first population). The mean square

error for the Chambers and Dunstan estimator is smaller for the first population, but
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estimator (2.3.13) has smaller mean square error for a = 0.25 and o = 0.75 in the second
population. The designs used in the Monte Carlo study were simple random sampling
and stratified with proportional allocation for the “Chambers and Dunstan” population
and a stratified design with ten strata and equal sample size in each stratum for the
“Hansen, Madow and Tepping” population. The strata for the “Hansen, Madow and
Tepping” population were created such that sum of z is approximately equal for each

stratum.

The three estimators presented by Rao, Kovar and Mantel are functions of Horvitz-
Thompson estimators of totals. Although the estimators involve the estimated param-
eter Zi, standard Horvitz-Thompson estimators of the variance can be applied. The
variance estimator for estimator (2.3.13), F\RKMdm(y'), requires computation of third or-

der inclusion probabilities m;;;, which may be cumbersome to compute for some designs.

For quantile estimation, Rao, Kovar and Mantel use ratio and difference estimators
that make use of the sample and population quantiles for the x variable in order to
improve precision over the sample quantiles for y. Note that F\RKMdm(y') and F\RKMd(yf)
may not be monotone increasing. Rao, Kovar and Mantel do not present quantile esti-

mators that rely on inversion of the estimated distribution function.

Dorfman (1993) discusses estimators (2.3.4) and (2.3.13), and proposes a modified
version of (2.3.13) that is less dependent on design based ingredients and does not need
computation of second order probabilities. Dorfman observes that the estimator (2.3.4)

is preferable when “reasonably careful modeling” analysis has been conducted.

Rao and Liu (1992) distinguish four different approaches for the use of auxiliary
information at the estimation stage. With respect to distribution function estimation,

the four approaches are:
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e design based approach, which leads to estimators like (2.2.1), that do not use
auxiliary information, and estimators (2.3.10) and (2.3.11), that use auxiliary in-
formation. Rao and Liu note that in general “the correlation between [(y; < )

and [(xz;0 < y) appears to be weaker than the correlation between y; and x;.”
e prediction approach, which includes the model based estimator (2.3.4).
e model assisted approach, which leads to the estimator (2.3.13).

e conditional approach, where the estimator is constructed relying only on the knowl-

edge of p,, and not on all values of z;, j € U.

An interesting comparison of the properties of the estimators (2.3.4) and (2.3.13) is
given in Chambers, Dorfman and Hall (1992). The large-sample mean square errors of
both estimators are considered from a theoretical point of view. None of the estimators

dominates the others for all §y € R. Chambers, Dorfman and Hall consider the model
Yy, = a+ bry + Uy,

where the design points xj are the realization of a random variable with expected value
s, variance 72, and design density d(x). The design density d(x) used by Chambers,
Dorfman and Hall (1992) is the limiting probability density function of the z in the su-
perpopulation model. The parameters a and b are unknown, and the Uy, are independent
identically distributed with mean zero and density g(u). Chambers, Dorfman and Hall
(1992) show that the difference

V{ Fricaran(§) — Fx()} = V{Fon(i) — Fa(i)} (2.3.15)

is positive when g(u) is symmetric about zero and d(x) is symmetric about g, and
the model used to construct ﬁRKMdm and F\CD is true. The difference (2.3.15) can be
negative under different specifications of g(u) and d(«). For instance, under the following

conditions,
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e g(u) bounded on a compact support, with the exception of a pole at ug, where

g(u) o Ju — uo|~3* as u — uo,

o the design points have a density bounded on a compact support, with the exception

of a pole at xg, where d(z) o |z — x| 73/* as & — o,
o uy =0,

® o= a—+ brg+ ug,

the difference (2.3.15) becomes negative for § = ¢o. Even though the previously de-
scribed situation is very extreme, it shows that from a theoretical viewpoint there are
situations where F\RKMdm outperforms ﬁcp even when the model used in the construc-

tion of both estimators is correctly specified.

Wang and Dorfman (1996) combine estimators F\CD and ﬁRKMdm in a weighted

aVerage:
Fwp(y) = wyFop(§) + (1 — wy) Fricaram(9) (2.3.16)

The weight wy is estimated from the sample in order to minimize the asymptotic mean
square error. Wang and Dorfman show that estimators (2.3.4) and (2.3.13) have some
components that are negatively correlated. Wang and Dorfman take advantage of this
negative correlation in the method for selecting wy. An estimator of the variance of Fwp
is given. This variance estimator uses quantities that are calculated in the computation
of the optimum w;. An interesting byproduct of the computation of estimator (2.3.16)
is the value that w, assumes for each value of y. These values of w; give “an idea of the
relative position of ﬁWD between ﬁcp and ﬁRKMdm”. Small values of w, indicate that
ﬁRKMdm is preferred over ﬁWD in the construction of ﬁWD. Values of wy close to one,
on the other hand, indicate that ﬁWD is preferred over ﬁRKMdm in the construction of

estimator (2.3.16).
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Wang and Dorfman claim that the new estimator ﬁWD is preferable to both the
Chambers and Dunstan and the Rao, Kovar and Mantel estimators, in the sense that

“losses of efficiency in the worst cases are marginal and gains can be appreciable.”

2.4 Nonparametric Estimation

This section refers to the group of techniques for nonparametric estimation of func-
tions known as kernel smoothing. Kernel smoothing permits one to explore relationships

in data sets without imposing a full parametric model.

Let v(xx) = E(Ys ‘ X = x) be the conditional expectation of Y given x;. The
conditional expectation y(x) is usually called the regression of Y on x. The regression
function minimizes the mean square error E[Y; — {(zx)]* over all functions /(x). The
approach used in nonparametric regression is to approximate y(x) by a function m(x)

that is not restricted to belong to a fixed finite parameter family.

The method of local polynomial kernel estimators estimates the regression function at
a point z¢ by fitting a pth degree polynomial to the data using weighted least squares.
The weights are computed using the kernel function. The kernel function is usually
selected to be a density symmetric about g with a scaling parameter b called the band-

width. The weights used in the least squares fitting are
w(xyg) = b_llx”<b_1[:1;0 — l’k]) (2.4.1)
where K is the kernel function. Let K} denote the rescaled kernel function
Ky(xo — ) = b—1[(<b—1[;1;0 — :1;])

Normally K is selected to be a symmetric unimodal density that assigns larger weights

to points close to xgy. Points closer to xg then have more influence on the estimation of
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m(xo) than points that are farther from xg. The relative distance between xy and other
points is controlled by the bandwidth. For small b, m(x¢) depends more heavily on the
points closest to z¢ and the regression curve is a more wiggly, undersmoothed estimate.
As b — 0, m(x) tends to an interpolation between the points (y;,x;),7 € A . When
b is large an oversmoothed estimate is produced, the weights tend to be approximately
equal and the estimate tends towards the ordinary least squares fit (Wand and Jones,
1995, page 117). The terms “small” and “large” b are relative to some optimum b. If
we select a value of b smaller than the optimum b we have a undersmoothed estimate.

If we select a value of b larger than the optimum b we have a oversmoothed estimate.

The local polynomial kernel smoothing method is carried out as follows. Consider a

pth degree polynomial

Bo+ Bi(xg — x0) + ... + Bylar — 0)”

on the values of & centered at xg. Let B = (B\o, 23\1, e ,B\p)’ be the weighted least squares
estimator of 3, using the weights w(x) defined in (2.4.1). Since the independent variable

is centered at xg,

o~

fl\l(l’o) = 60.
Recall that m(xg) is also a function of b and K. A simple formula for m(x) is available
when p =0
-1
(@) = {Z Ko(o — xj)} {Z Ko(zo — 2;) Y; (2.4.2)
JEA JEA
Estimator (2.4.2) is known as the Nadaraya-Watson estimator.
In the finite population setting the sample weights are used by some authors to

obtain consistent estimators of the finite population regression fit. The weights used in

the weighted least squares estimator of 8 are then 7 'w(zy), where 7, is the first order
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probability for unit k and w(xy) is defined in (2.4.1). The formula for the Nadaraya-
Watson estimator (2.4.2) is then
—1
(o) = {Z 77 Ky (20 — xj)} {Z T Ky(wo — 25) Y, (2.4.3)
JEA JEA

if sampling weights are used.

A measure of performance of the kernel smoothing estimator is the mean square error
MSE <ﬁl($0)> = E[m(zo) — m(x0)]? (2.4.4)

for the point xg. The mean square error (2.4.4) is conditional on the = values, that is,
considering the = fixed. A consolidated error measure for the whole range of x is the

weighted mean integrated square error

MISE(m) = E{ / [(z) — m(z)]%d(x) d:z;}, (2.4.5)

where d(x) is the design density defined in Section 2.3. Assume that “b” corresponds
to the value of the nth term of a sequence of bandwidths. Asymptotic considerations
usually assume that

Imb=0

n—0oo

lim nb = cc.
n—00

The mean square error can be decomposed into two terms

2

MSE(i(x0)) = V(@ (r0)) + (Elfi(ro)] — m(ro)) (2.4.6)

The bias part in (2.4.6), E[m(xo)] — m(xo), increases with b, so we need b small to
have small bias contribution to the mean square error. On the other hand, the variance
part in equation (2.4.6) is O((nb)_1> therefore reducing b will increase the variance

contribution to MSE(?%(:I;O)). Section 5.3 of Wand and Jones (1995) considers this

variance-bias trade-off problem in determining the value of b for the linear case, p = 1.
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Choosing a particular kernel function K" and an appropriate bandwidth b are some
of the central issues in kernel smoothing. The selection of the bandwidth has a much
larger effect on the performance of the estimator than the selection of K. The methods
of selection of the bandwidth based on the data are called bandwidth selectors. One

bandwidth selector often used chooses b to minimize the MI1SE(m),
bMISE == Hlbln <M[SE(ﬁl)>

The weighted mean integrated square error is unknown, for it depends on m(x). An

estimator of bysrsg is used in practice.

Another point of concern is the performance of m(-) near the boundaries of the x
values, that is, close to min(x;,j € A) and max(x;,j € A), where the kernel window may
be partially empty of data. The problem of estimating m(-) near the boundaries is known
as the boundary bias problem. The boundary bias problem deals with the difference in
the orders of magnitude of the bias in an interior point and near the boundary of the =

data.

2.5 Nonparametric Estimation of the Distribution Function

Kuo (1988) and Kuk (1993) use nonparametric estimators of the joint distribution
function of = and y, as instruments for estimating the distribution function of y. Kuo

proposed an estimator of the joint distribution function

Frtwaeon (i) = NS Iy gy <)+ 30 D Wl (< vy < )
JEA 1€A° jEA
(2.5.1)

where the weights W;; can be computed using one of the following methods:

1. naive estimator: Wi; = [I(|z; — x;] < €)] [E]‘GA I(Ja; —2;] < €)]
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2. kernel method: W;; = {K[b~"(z; — ;)] }{ D ien K07 (@i — l’]‘)]}_l, for some func-
tion K such that [ K(z)dz = 1.

3. k nearest neighbors method: W;; = k="' if z; is one of the k nearest neighbors of

x;, Wi; = 0 otherwise.

Kuo does not discuss methods to select optimal € or k, and refers the reader to Silverman
(1985) for the selection of b. Estimator (2.5.1) uses the y values in the sample to impute

for the unobserved y. Note that > .., W;; = 1 for all i € A°. For each i € A°,

jEA
diea Wiil(zi < #,y; < y) is a quantity between 0 and 1 that tries to predict the
unknown [(x; < &,y; < y). Special care in selecting € and b is required to avoid undefined
weights in methods 1 and 2. The estimator of the finite population distribution function
of y is the corresponding marginal of (2.5.1):

Freaoli) = N7 s <)+ 30 3 Wl (y; <)} (2.5.2)

JEA i€Ac jeA

A Monte Carlo study comparing estimators (2.5.1), (2.5.2) and (2.2.1) is presented for

three populations and three sampling designs. Estimator (2.5.2) does not perform much

better that the Horvitz-Thompson estimator (2.2.1) in the Monte Carlo study.

Kuk estimates the joint distribution function using kernel smoothing to obtain

Freanmyn(#,7) = { > w],—l}—l{ S oW E — ) W (- y;)]}—l
JEA JEA

(2.5.3)

where W(u) = e*(1 +€*)~" is the standard logistic distribution function. The estimator
of the bivariate density corresponding to (2.5.3) is

-1

Fiateolit ) = b7 3w} LS wlb™ 6 — ol (5~ )]}

JEA JEA
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where w(u) = €“(1 + €*)~2. A smoothed estimator of the conditional distribution of y
given x is
Frogioli | #) = { S wrtulp (6 — ]} { D0 w7l — 2 WD - )]}
JEA JEA

Since the distribution function of x, denoted by Fyn(:), is assumed to be known, the
estimator of the distribution function of y can be computed as

ﬁ]«'uk(y) = /ﬁfx'uk,y|x(y ‘ T)dF,n(2) = Z F\I\"uk,y|x(y|xi) (2.5.4)

ieu

Note that only one bandwidth parameter b is used for both x and y. Kuk recommends
pre-scaling of  and y to similar ranges. The value for the bandwidth parameter is
selected as b = n~'R,, where R, denotes the range of x: R, = max{z;,1 € U} —
min{xz;,1 € U}. An expression for the variance of (2.5.4) and a discussion on design
consistency of ﬁjwk(y) are provided. A Monte Carlo study (based on 200 samples)
shows that estimator (2.5.4) is robust against misspecification of the model. Kuk states

that based on empirical evidence, estimator (2.5.4) “is more efficient than the estimators

suggested by Rao et al. (1990).”

Chambers, Dorfman and Wehrly (1993) use nonparametric regression to estimate
F.(y), the distribution function of the unobserved units
E(j) = (N=n)"" > Iy < 9). (2.5.5)
€A
Chambers, Dorfman and Wehrly assume a working model with conditional expectation

equal to
B[I; < 9) | )] = n(e). (25.6)

with the possibility that the conditional expectation of Y given x is proportional to z,
that is

ED/J ‘x]] :xjﬁv
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as in the case of model (2.3.1).

Chambers, Dorfman and Wehrly present two nonparametric estimators of (2.5.5).
The Nadaraya-Watson estimator using a uniform kernel U(x; — b, x; + b) is
Fopw. () =Y my " I(y; <) (2.5.7)
jeA
where

1
ﬂl?JVV = (]V>—— 7@)—4—25:: ](5Ei —b< x; <a+ b)'{ :E::‘[(ay'—— b< o, < + b):} .
1EAS keA

The other nonparametric estimator of F,.(-) is the Gasser-Miiller kernel smoother. As-
sume that the population labels are ordered by increasing value of x: ;1 < 9 < ... < 2y,

and that 71 < g3 < ... < j, are the labels of the units in the sample. Define ag = —oc;

ag = 27 (wj, + xj,,, ) for £ =1,...,n—1; a, = +oo. The Gasser-Miiller estimator of
(2.5.5) is
F&Bw (9) =Y m§M I(y; < 9) (2.5.8)
jeA
where

ag
mgM =b"Y(N —n)™* / Z Kb (z; — u)]du.
ag—1

1€AS
As a special example of (2.5.8), consider the kernel function U(—1,1). As b — 0, the

weights mgM go to (N —n)~! times the number of elements in the set {i € A° : ay_; <
z; < ap}. That is, the weights are equal to the proportion of nonselected units with an x
value “close” to x; for j € A. Estimators (2.5.7) and (2.5.8) can be incorporated as part
of a distribution function estimator. An estimator of the distribution function based on
the Nadaraya-Watson estimator (2.5.7) is
PO 5) = N7 3 1w <)+ (Y = m) B, ().
jeA
A similar estimator of the distribution function can be derived from the Gasser-Miller

estimator (2.5.8).
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Consider, in what follows, the Nadaraya-Watson estimator (2.5.7). Similar results
apply to the Gasser-Miiller estimator (2.5.8). Under (2.5.6), the conditional prediction

bias for the Nadaraya-Watson estimator of F.(+) is

b [F(]J\gVWr(y) - F ‘ An, F. xN Z mNW l'] N n) ' Z 77(51/’2')7
JEA 1EAC
(2.5.9)

where n(x;) = E[I(Y; < y) ‘ z;]. Chambers, Dorfman and Wehrly suggest estimating

(2.5.9) under model (2.3.1) to produce a calibrated version of estimator (2.5.7),

E[Fé’\g/VWr(y)_F( )| A, Fon] ZmNWG ZmNW[ <9)
JEA JEA
(2.5.10)
where (7, is defined in (2.3.4) as part of the Chambers and Dunstan estimator. Subtract-
ing the estimate of the bias (2.5.10) from estimator (2.5.7) we get the bias calibrated
estimator,
FOivn ) = BOBi, () + > m™ [ 1wy <) = G (5[5 — 30|

JEA
(2.5.11)

Chambers, Dorfman and Wehrly maintain that in the event that model (2.3.1) is ap-

proximately true Févngr should perform better than Févngr

A finite sample model based approach in the bandwidth selector is used by Chambers,
Dorfman and Wehrly. The summation in () is already a form of smoothing, and using
criteria that minimize the integrated square error would lead to oversmoothed results.
The bandwidth b for estimator (2.5.7) is chosen to minimize an estimate of the mean
square error of prediction under model (2.3.1): V2 + B2 where

VE= Y (mi PG (h ' — aibal) {1 = Ga (R [y — 2564]) }
jeA

B, =Y mMaG, (h'] =Y Gu(hT [y — wiba)).

JEA 1€AC
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The bandwidth for estimator (2.5.11) is selected to minimize V*. In practice, Chambers,
Dorfman and Wehrly suggest to use a grid of potential bandwidth values and choose the

b that minimizes V2 + B? for ﬁgngr and that minimizes V? for Fvévngr.

Chambers, Dorfman and Wehrly study a total of 17 estimators in a Monte Carlo sim-
ulation involving a population of 430 farms with 50 or more beef cattle. Two models,
one that fits the data poorly and one based on transformed x and y that has a better fit
are used. Nonparametric regression estimators and bias calibrated estimators are com-
pared to estimators (2.2.1), (2.3.4) and (2.3.13). The performance, measured in mean
square error, of the calibrated estimators is, in general, better than the corresponding
nonparametric regression estimators. The best results, in terms of mean square error,
are achieved by the Chambers and Dunstan estimator (2.3.4) under the better fitting

model.

The paper by Dorfman and Hall (1993) works on the large-sample theory for several
estimators of the distribution function under simple random sampling without replace-
ment. Three different “schemas” are considered to describe the relationship between y

and z:

(1) y has a well defined relation to x, for instance, Y; = a + bx; + ¢;, where E(¢;) = 0,

and all ¢; have a common distribution G,

(2) y has an ill defined but smooth relationship to « of the form Y; = m(a;) + ¢, with

¢; as above,

(3) the function I(y; < y) is more closely related to x; than y,. We may have, for
instance, E{I(Y; < 9) ‘ xi b= H(x).

The list of estimators studied under these three schemas includes
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e Horvitz-Thompson estimator (2.2.1)

e estimators (2.3.4), F\CD, and (2.3.13), F\RKMdm under schema (1)

e nonparametric regression versions of ﬁcp and ﬁRKMdm under schema (2)
e estimator (2.5.2) proposed by Kuo under schema (3)

o design adjusted Kuo estimator, an analogue to Rao, Kovar and Mantel estimator

under schema (3),

Fruoa(§) = Fur(y) + N7 H(z:) = (7' = N7 Hi(x))
€U JEA

where

H(i) =Y Wisl(y; <)

JEA
Hi(w;) = > WHI(ys <),
kEA k)

W;j is defined in (2.5.1) and

Whi — K(b‘l[:zik _ %D { Z K(b_l[:lii — :1:;])} -

i€ATF£]

e nonparametric calibration estimator introduced by Dorfman and Hall

ﬁDH(y) =N {Z[(yj <y)+ ZGn(Q—a—Zwi) + CDH}

JEA 1EAC
Com =% Wyllly; <) — Gulyy — @ ba)]
1€AC jEA

Expressions for the asymptotic model bias and model variance of these estimators
are computed (see Dorfman and Hall, 1993, Table 1). Dorfman and Hall observe that
although some estimators perform better under certain conditions, there are no clear
winners. The group of “bias-vulnerable” estimators includes Chambers and Dunstan’s
estimator (2.3.4), the naive estimator (2.2.1) and the Rao, Kovar and Mantel’s estimator
(2.3.13). The Rao, Kovar and Mantel’s estimator (2.3.13) is also called bias-vulnerable

because it is conditionally model biased, conditional on the sample indexes.
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2.6 Poststratified Estimation

Nascimento-Silva and Skinner (1995) consider a poststratified estimator of the dis-
tribution function with poststrata defined by intervals of x. Poststratified estimation
is a widely used method in survey sampling. Furthermore, poststratified estimation
may be more robust than model based procedures because it does not depend on a
specific model. Consider a partition of U into G groups Uy, Uy, ..., Ug where ¢ € Uy if
Tlg—1) < Ti < T[y); Tjo] = —00, T[] = +00 and zpy) < 2 < ... < T[g_q] are some fixed

values. Let A, = ANU,¢g=1,2,... ,G. Let N, be the number of elements in U,, and

let Ng = EjeAg 7rj_1. Then the poststratified estimator of Fy(y) is
Fps() = N7" Y NoNG' Y mi {y; <) = N7 ) NoFy(9)
g=1 JEAg g=1

(2.6.1)

where ﬁg(y) = N;l E]‘eAg W{lf(yj < ). In practice, any poststrata without observa-

tions are combined with non-empty adjacent strata.

The poststratified estimator ﬁps defined in (2.6.1) is compared theoretically and in a
Monte Carlo study with estimators F\HT, F\CD, ﬁRKM,,, F\RKMd, ﬁRKMdm, ﬁ]{uo and ﬁ]{uk
defined in (2.2.1), (2.3.4), (2.3.10), (2.3.11), (2.3.13), (2.5.2) and (2.5.4) respectively. Let
F denote any of the estimators F\Ps, ﬁHT, F\CD, ﬁRKM,,, ﬁRKMd, ﬁRKMdm, F\Kuo and ﬁ]{uk

mentioned above. The criteria used for the comparison are:

o Is I monotone, with limy_,_., ﬁ(y) =0 and limy_ 4 ﬁ(y) = 1?7 The three esti-
mators proposed in Rao et al. (1990): F\RKM,,, ﬁRKMd, and F\M'Mdm, fail to meet

the monotonicity criterion.

~

e Does y = = imply F' = Fy? When y = x, estimator (2.6.1) is equal to the

distribution function for ¢y = z[¢],g = 0,1,... ,G, but not for general values of y.
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The property holds for F\CD, ﬁRKM,,, ﬁRKMd and ﬁRKMdm. The estimators that

do not equal the distribution function when y = x are ﬁHT, F\Kuo and ﬁ]{uk.

Is there flexibility in the use of auxiliary information? The poststratified estima-
tor ﬁps only needs the NN, values to be known, that is, the number of units in
the population with values of = in certain intervals. The Chambers and Dunstan
estimator can be computed when summary information about the number of ele-
ments per interval of x is available, as shown in Dunstan and Chambers (1989).
When more than one auxiliary variable is available, the estimators that can be
extended easily to include such variables are ﬁps, F\CD, ﬁRKMd and ﬁRKMdm. The
extension of F\RKM,,, ﬁ]{uo and ﬁ]{uk to include additional auxiliary variables is not

straightforward.

Is the computation simple? Nascimento-Silva and Skinner adopt the convention
that an estimator is simple to compute when the estimator can be written as
Fly) = wil(y; <)
jeA
where the w; do not depend on y; or on y. Only the estimators ﬁHT, F\Kuo and
Fps have this property. Ease of computation may become an important issue if

we want to compute the distribution function for several values of .

Automatic definition of the estimator. The only estimators for which no mod-
els, bandwidths or scaling factors are necessary are ﬁHT, F\RKM,, and F\RKMd.
The poststratified estimator (2.6.1) requires the definition of G and the z[;, g =

1,2,... ,G — 1 values.

Bias. Asymptotic model unbiasedness for estimators F\CD and ﬁRKMdm is shown
in Chambers and Dunstan (1986) and Rao et al. (1990) respectively. The post-

stratified estimator is design unbiased provided N, > 0 for all groups.



32

e Variance. An approximate expression for the variance of estimator (2.6.1) is

V{Fps()} = N2 (mym; — mij) (i — ajm; ) (2.6.2)
1<jeU
where a; = I(y; < y) — F,,(y) and g; is the group to which unit ¢ belongs. Note
that the variance of ﬁps is zero if all of the y values in each group are either below
y or above gy, indicating that it is not possible to have a single poststratification
that minimizes (2.6.2) for all values of y. An estimator of (2.6.2) is
V{Fps()} = N~* Z (mimy — mij)mi;t (amyt — ajmi )2
1<jeU

A Monte Carlo study of the performance of estimators ﬁHT, ﬁcp, F\RKM,,, F\RKMd,
ﬁRKMdm, F\Kuo, F\Kuk and ﬁps is presented in Nascimento-Silva and Skinner (1995).
Two populations are used: the 338 sugar cane farms used in Chambers and Dunstan
(1986) and the population of 430 beef cattle farms used in Chambers et al. (1993).
The distribution function and the estimators listed are computed at eleven quantiles y,,
corresponding to o = 1/12, 2/12, ..., 11/12. The average bias, average mean square
error, aggregated average bias for the 11 quantiles, aggregated average mean square error
for the 11 quantiles and maximum absolute deviation between each estimator and the
finite population distribution function are computed. Simple random samples of size 30

and 50 are selected. Three schema of poststratification are considered:

e cqual number of units in each poststrata,
o equal aggregate square root of = in each poststrata,
o equal aggregate of = in each poststrata.

The performance of the poststratified estimator is not very good for samples of size 30

and 50. As shown in other papers, the Chambers and Dunstan estimator outperforms the
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others in terms of aggregate mean square error. The bias component has a relatively large
contribution to the mean square error of ﬁcp. Nascimento-Silva and Skinner observe
that if the bias does not decrease at the same rate as the variance of the Chambers and
Dunstan estimator, the relative contribution of the bias to the mean square error will be
larger as the sample size increases. In fact, for samples of size 300 from the beef cattle
farms population, the performance of the poststratified estimator is roughly the same

as the performance of the Chambers and Dunstan estimator.

Fuller (1966) gives an alternative for collapsing empty poststrata with adjacent non-
empty poststrata that produces unbiased estimators. Suppose that the population is
divided into two poststrata: U; and U,. A simple random sample is selected from the
population. Let A, = U, N A, g = 1,2. After the sample is selected, two possible

situations are considered:

e case [. Both A; and A, are non-empty.

e case [I. One of the A, has no elements.

The poststratified estimator of the population mean y, = N7' Y. y; for case I is
Lrps = N_I[N1§1 + Nyys] (2.6.3)

where N is the number of elements in U, and y, is the sample mean for A,, ¢ = 1,2,

gg=n," ) i
JEAg
and n, is the number of units in A,. Estimator (2.6.3) is unbiased for y, given that case

I has occurred. If one of the strata is empty, estimator fipps is based on the sample

mean of the non-empty strata.

frps = Dign  if A=A

— D2y2 lf A — AQ
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where Dy and D, are chosen such that jipps is conditionally unbiased under case II:
Py Dy + Py Dajiyz = puy

where P is the probability that A, is non-empty given case II, and p,, = Ng_1 EieUg Yi,
g = 1,2. For [ipps to be conditionally unbiased given case II for all g, and g2, we

need to have

where P, = N™!' N, is the proportion of units in stratum ¢, g = 1,2. Fuller notes that it is
unclear under which conditions estimator (2.6.3) will perform better than the customary
poststratified estimator formed by collapsing empty strata. According to Fuller, if the
procedure is generalized to more than two strata “it is very possible that the unbiased

estimator would have a smaller mean square error than the biased collapsing estimator.”

Note that if Ny = N,, under simple random sampling without replacement, P =
Py =1/2. If Ny = N, estimator (2.6.3) and the biased collapsing estimator are the

samme.

The extension of the procedure to more than two strata is done by repeatedly di-
viding the population into groups of two. In the example presented in Fuller (1966) the
population is divided initially into two groups, 1 and 2. Group 1 is divided into strata
11 and 12. Group 2 is divided into groups 21 and 22. Finally, group 22 is subdivided
into strata 221 and 222. The five resulting strata are then identified as: 11, 12, 21, 221
and 222. The method described in Fuller (1966) is then applied iteratively to sets of two
strata. First, the two strata with 3 digit identification numbers are considered. Strata
221 and 222 are then combined to reconstruct “stratum” 22. The method applied to
strata 21 and 22 gives an estimation for stratum 2, and the method applied to strata
11 and 12 gives an estimation for stratum 1. At each stage we are dealing with only 2

strata so that an analogue of estimator (2.6.3) can be used for unbiased estimation. Es-
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timator (2.6.3) can be changed to an estimator of the distribution function by replacing

the variable y with the function I(y < ¢).

Wey (1966) presents two estimators for the population mean g, that use the ranks
of the variable = as auxiliary information. The design used is simple random sampling
with a sample of size n selected from a population of size N. In order to simplify
notation, assume that the sample is sorted by some auxiliary variable x, and that A =
{1,2,...,n}. That is, the elements in the sample are labeled 1 to n, and ; < 23 <

. < z,. Let z;,5 € A be the ranks in the population of elements in the sample.

The first estimator is constructed using the x values in the sample to stratify the

population into n strata with boundaries defined by [2_1(22'_1 +2), 27N + ZH_l)] for

1 =1,...,n, where zp = 1 — z; and 2,47 = 2N + 1 — z,. The number of elements
in Stratum ¢ is Ni[l] = 274241 — 2z21) for i = 2,... ,n — 1. The number of elements
in stratum 1 is Nl[l] = 272 4+ 22 — 1) and the number of elements in stratum n is

Nq[f] =2"%2N 41—z, — 2,_1). Note that some of the stratum sizes may be noninteger.

The sum of the stratum sizes is N. The Ni[l] are random variables that depend on the

zi,1 = 1,...,n. The pseudo-poststratified estimator of p, for strata of size 1 is defined
as
n—1
il = n N+ ) o+ D M+ (V4 D+ D7 4 w)
= (2.6.4)

where the weight given to observations 1 and n has the purpose of reducing the bias in
(2.6.4) as an estimator of p,. Wey generalizes estimator ﬁ%, by allowing each stratum
to have r sample elements. Assume n = mr and let the stratum boundaries be defined
by [Z_I(Z(h_l),, + Z(h=1)r41), 27 Nz + Zh,,_H)] yh=1,... ,mwith zg =1—2; and z,;, =

2N 4+ 1 — z,. The number of elements in stratum A is then Nf[f] = 27 (2p + g1 —



36

Z(h=1)r — Z(h_l),,_l_l). The pseudo-poststratified estimator for strata of size r is defined as

m—1

figte =™ (N 4 )7 4 DY Mg (N D+ 17 01+ 5)

(2.6.5)

where y;, is the sample mean of the hth stratum. Wey uses the following linear model
to study the properties of ﬁg&v

Y; = A —|— BZZ —|— €, (266)

where the ¢; are uncorrelated random variables given z; with Ele; |zi] = 0 and Ve;

ZZ] =

S2. An expression for the approximate variance of estimator (2.6.5) under model (2.6.6)
is given. The optimum value for r can then be determined, under model (2.6.6), by

minimizing the approximate variance of ﬁg&v (Wey, 1966, page 86).

An alternative unbiased estimator of ;,, using the ranks of « as auxiliary information
is constructed by averaging conditionally unbiased estimators. Assume that n = 2m +1
for some m > 2. To construct an unbiased estimator of p,, condition on the even
numbered observations 2:,2 = 1,... ,m. If observation 2 is given, observation 1 can be
seen as a simple random sample of size 1 from the set of observations with ranks of
z in the set {1,2,... 22 — 1}. Given observations 2 and 4, the third observation can
be seen as a simple random sample of size 1 from the set of observations with ranks
in the set {z3 + 1,...,24 — 1}. Proceed similarly with the rest of the odd numbered
observations. An unbiased estimator of the mean can be constructed by weighting
observations 2¢ + 1,72 = 2,... ,m — 1 by the number of elements in the population that
lie between the two contiguous even numbered observations: (zg,42 — z2; — 1). The
weights used for observations 1 and n are (z3 — 1) and (N — z,_1) respectively. The

estimator

ﬁ[v%/h = N_l{fvm + Z yzi} (2.6.7)
=1
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is conditionally unbiased for u, given observations 2,4,... ,2m, where

m—1

ijW1 = |(z2 — L)y1 + Z(Z%-I—Z — zoi — Dyaiv1 + (N — z—1)yn| -
i=1

Similarly, we can condition on the odd numbered observations 2:+1,: = 2,3,... ;m—
1 to construct another unbiased estimator of p,,. The first and last observations are not
used in the conditioning operation. Given observation 3, the first two sample elements
can be seen as a simple random sample of size two of the (z3 — 1) elements with z < 3,
that is, with ranks in the set {1,2,... 23 — 1}. The last two observations can be
viewed as a simple random sample of size 2 selected from the set of observations with
ranks in the set {z,_o+1,2,_2+2,... , N}. The rest of the even numbered observations
2i,1=2,3,...,m—1 are treated as samples of size 1 from the sets with (z2;41— 22,1 —1)
observations whose values of = are between wz9;,_; and xy,4; respectively. A second

unbiased estimator of p, is then

m—1
i N—l{TW2 +y yzm} (2.6.8)
=1
where
. m—2
Twa = |(23 — 1)2_1(91 +y2) + Z(ZZH—I — zi21 — Dyai + (N — Zn—2)2_1(yn—1 + yn) |-
1=2

Wey suggests to use the mean of estimators (2.6.7) and (2.6.8) as an estimator for y,,
Ay =27 Gl + ). (2.6.9)

where the superscript [2] denotes that estimator (2.6.9) is the mean of two conditionally

unbiased estimators. Estimator (2.6.9) is design unbiased for .

Wey generalizes estimator (2.6.9) to the case where the unbiased estimator for g,
is constructed by averaging k conditionally unbiased poststratified estimators, where &

may vary between 2 and n. In the extreme case of £ = n, for instance, each one of the
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n unbiased estimators is constructed conditioning on just observation 7,1 = 1,2,... ,n.
Assume that n = km + k& — 1. One of the conditionally unbiased estimators is obtained

by conditioning on observations ki + 1,0 =1,... ,m as

~[k 1 Ak
/«LE/V]1 =N I{TIEV]I—I_ § :yki-l-l}
=1

where
k m k—1
=k - _
Tv[v]1 =k 1(Zk+1 - 1) Z Yyj + (k - 1) ! Z(Zki-l—l - Zki—k+1) Z Yki—k+1+5
k=2
+ (k= 2)7"(N = zjmp) Z Ykm+1+j
=1
Similarly, a second conditionally unbiased estimator, ﬁg;,]z, is constructed by conditioning
on observations ki,0 = 1,...,m. A third conditionally unbiased estimator, ﬁg;,]:g, is
constructed by conditioning on observations ki — 1,2 = 1,... ,m. The procedure is

repeated until each observation, except the first and last, have been used once and only
once in the conditioning set (Wey, 1966, page 62). The general unbiased estimator for

[ty 18 then constructed by averaging the ﬁg;,]l as

k

~[k _ ~|k

Ay = k7> Fige (2.6.10)
=1

An expression for the approximate variance of estimator (2.6.10) under model (2.6.6) is
given. The optimum & can then be determined by minimizing the variance of ﬁ%{/ with
respect to k (Wey, 1966, page 98). Estimators for the variances of ﬁg&v and ﬁ%{/ are

given in Section V of Wey (1966).

2.7 Comments

Some comments on the different articles described in this chapter, particularly those

in Section 2.3, are possible.
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e The Chambers and Dunstan estimator (2.3.4) outperforms the others when the
model used to construct it closely describes the relation between y and x. This
estimator does not recognize the sampling design, and performance breaks down

when the model is incorrectly specified.

e Model misspecification can occur for: (1) the mean function for y in terms of x, (2)
the variance function of the residuals, V{h(x;)Us} in (2.3.1), and (3) the specifica-
tion of a common distribution function. Correct specification of the variance may

be more difficult to achieve than the correct specification of the mean function.

e Intensive computations seem to be unavoidable in the estimation of the distribution
function. The Chambers and Dunstan method requires the computation of n(N —
n) imputed values for the variable y as presented in (3.1.1). The n(N —n) imputed
values for the variable y may be used to estimate the distribution function at as

many points as desired.
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3 LOCAL-RESIDUALS ESTIMATOR

3.1 Introduction

The Chambers and Dunstan estimator (2.3.4) can be seen as a weighted average of
n 4+ n(N —n) indicator functions. The construction of the estimator is composed of
several steps. First the regression coefficient b, is computed. Then for each element
1 € A°, y; = x;b, is computed. Then n new y values are created for each i € A° by
adding to g; each of the n sample residuals r; = y; — x;b, multiplied by h(x;)h(z;)~" for

7 € A. Thus, the new imputed values are
@'?D = wiby + hih; ' (y; — 25b,)
= i+ hihj'r; (3.1.1)
for i € A, j € A°, where h; = h(x;). Estimator (2.3.4) can be computed as

Fop(p) = N7 [ Yty <) + 3 Yo7 1G < ). (3.1.2)

JEA 1€EAC jEA

The same idea of an “imputed” population is used for the local-residuals estimator
developed in this section. Instead of using the n residuals for each nonsampled unit 1,
only residuals from sampled units that are “close” to 7 are used. Assume that model
(2.1.4) holds and that the value for an auxiliary variable, x, is available for each element
in the population. For the units in the sample both y and  are available. For simplicity

we will assume that there are no duplicate x values.
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Suppose that the sample is divided into B groups according to the sorted values of
z and that £ = n/B is an integer. Each group, denoted by A, contains k& elements of
the sample such that z_1jrt1), ..., 2@x) € A, £ = 1,..., B, where z(;) denotes the jth

sample order statistic of x,

T(1)s - v s T(h)s T(hgl)s - -+ s L(2k)s -+ - > TB1Jkf1)s - - - 5 L(n) - (3.1.3)

Group 1 Group 2 Group B

Elements in the population are divided similarly into B bins, denoted by U,. The
boundary between bins Uy and Ugyy is (2(my + 2@r41y)/2, £ = 1,... , B — 1. For each

1 € U, let /; be the index of the bin containing unit :. That is, for unit ¢, ¢; = ¢ if

v < (g +aeen)/2 forl=1
(=10 + T(—1Jk41))/2 < 2 < (2@ Fr@gy]/2 forl <l < B
(51?([B—1]k) + 51?([B—1]k+1))/2 < for { = B.
Because we are assuming that = is a continuous variable, the inequalities that define
the bins are strict inequalities. Similar definition for populations with ties are possible,
but in such cases the number of sample elements in each bin will not necessarily be the

samme.

The local-residuals estimator is defined as
Fi(y) =N~ {Z IY; <y)+ Z G, (b7 [y — szg])} (3.1.4)
JEA i€he
where
~ -1
B = {Zw]ﬂh;zifjx]} {ZW{%}%?} , (3.1.5)
JEA JEA
is the Horvitz-Thompson estimator of the finite population parameter 3,, where

Py = {Z hi_zyz’l'i} {Z hi_?:z:?} -

€U €U
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When we consider the finite population as a sample of size N from the superpopulation
model, 3, can be regarded as an estimator of the parameter 3 that appears in model

(2.1.4). The estimator of the distribution function of U used in (3.1.4) is

Gro(hT'g— =) = D wyl(h7' Y, — 2,81 < h7'[g—2:58])  (3.1.6)

jeAZl‘
= Z wijl (i + hih7'Y; — ;8] < 9)
]eAfl
with
-1
wij = W;l{ Z W;I} ) (3.1.7)
jleAZl‘
Each of the estimators GM(-),E = 1,..., B, uses k observations from the sample. The

estimator (,,(-) of the distribution function of U, introduced in the Chambers and
Dunstan estimator (2.3.4), uses all n observations from the sample. When estimating
G(hi'[y — :i3]) for each i € A°, estimator éu(-) is expected to be more robust than
estimator (G,,(-) against model misspecifications since Gu(-) only uses the k sampled

observations that are close to unit z.

Imputed values of y can be computed as in (3.1.1),
Ui = v+ hib 7 y; — ;0] (3.1.8)

Using ¥;;, estimator (3.1.4) can be rewritten as
Fuli) = N7 1 <o)+ Y0 3wl (@ <) (3.1.9)
jEA i€AC jEAy,
For each ¢ € A°, k new y;; are imputed using the k residuals from the sample points
with 7 € Ay,. A total of k(N — n) imputed values are computed. Note that if all 7; are
equal, as in simple random sampling, w;; = k™. Furthermore, if k = n, i.e., B = 1,

estimators (3.1.2) and (3.1.9) are identical.
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3.2 Limiting Distribution of F;(3) — Fi(y) Conditioning on the

Sample

We first study the sampling distribution of the local-residuals estimator conditional
on Ay under alternative superpopulation model assumptions. More precisely, since
from a superpopulation perspective, both ﬁL(y) and Fy(y) are random variables, we

will study the distribution of the estimation error

Fr(y) — Fy(3). (3.2.1)

for a fixed y, where ﬁL(y) is defined in (3.1.4) and Fn(y) is defined in (2.1.2). In
subsections 3.2.1 through 3.2.4 we will consider ﬁL(y) and Fy(y) to be functions of the

random variables Y;,¢ € U.

3.2.1 Case A: E(Y;) = x;8 and V(Y;) = h(z;)*0?% 3 and h(z;) known

We first derive the limiting distribution of the estimation error under the assumption
that the parameters of the superpopulation model are known. Theorem 3.2.1 presents the
model mean and model variance of the estimation error ﬁL(y) — Fy(y) for a fixed point
y. In Theorem 3.2.2 model consistency of F\L(y) for Fy(y) and the limiting distribution

of ﬁL(y) — Fn(y) are shown.

Theorem 3.2.1 Let Ay be a sample of size n selected from the finite population Uy of
size N. Assume that the sample is divided into B groups, each of size k, as described in

(3.1.3). Assume the superpopulation model
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for i € U, with h(z) known. Let h; = h(x;). The U; are independent and identically
distributed with E(U;) = 0, V(U;) = o? and distribution function G(u). Let ﬁLﬁ(y) be
the estimator (3.1.4) with the true 8 used in (3.1.6). Then for a fired point y,

(a) Estimator ﬁLﬁ(y) is model unbiased for the finite population distribution function
Fn(y) defined in (2.1.2).

(b) The model variance of the estimation error is

V(Frs(i) — Fx(9) | Av) = V(Ty [ Av) + V(T | Ax) (3.2.3)
where
V(TL ‘ AN) - N_2 Z Z Z Wi Wiy [G(mm[u“,uw]) - G(u“>G<u22>]
(=1 jED i1,in€U—A,

and
V(Ty |Ay) = N2 Z Gu:)[1 — G(u)],

with wi; = ;" D ireh, 7Tj_,1 defined in (3.1.7) and u; = hi'(y — x:3).

Proof. Part (a). The error in the estimated distribution function is

Firali) = (i) = N7 | 3 Gua (07 i = i) = > 10 <)
= = (3.2.4)

where @Lgi is defined in (3.1.6). Note that the first term depends only on the sample
observations while the second term depends only on nonsampled observations. Under

model (3.2.2), the Y;,i € U, are conditionally independent given Ay. Let the two terms
in (3.2.4) be

Tr= N3 Gre (b [y — i) (3.2.5)

1€AC
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and

Ty =N""Y 1Y <), (3.2.6)

1€AC
where the subindex L or N denotes whether the term comes from the definition of F 3

or from the definition of Fiy respectively.

The conditional expected value of (3.2.4) under model (3.2.2) is
E[Fys(y) — Fx(3) | Av] = E[Ty | Av] — E[Tx | Av]. (3.2.7)

The second term in (3.2.7) is

BTy [Av] = N7' ) E[I(Y: <) | Ay]
= N7 B[ <)l

since E[[(Yi < y)] does not depend on whether unit ¢ belongs to the sample or not.
Then

BTy [Av] = N7' ) B[I(h'[Vi — 28] < 'y — 2:0])]
1€AC
= N7 E[I(U; < )]
1€AC
= N7V G(i). (3.2.8)
1€AC

The first term in (3.2.7) is

E[Ty [Ay] = N7 E[Gr(hi'[i — «:f)) | Ax]
€A
= NN W B[I(U; <) | Av]

1EAC JEAy,

= NN Wy B[I(U; < )]

1€AC jEAgl.
= N7 wGlin)

€A jEAgl.

= N7 G(i) (3.2.9)

€A
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since E]EA[ wi; = 1 by construction and E[[(Uj < u2>] = E[[(Ui < u2>] = G/(u;) by
model (3.2.2). Combining results (3.2.8) and (3.2.9) we have that the local-residuals

estimator is conditionally unbiased for Fy(y), that is,
B[Fra(d) — Fn(9) | Av] =0, (3.2.10)

which proves part (a). In the survey sampling literature this property is called model

unbiasedness.

Part (b). Since Ty, and T defined in (3.2.5) and (3.2.6) are conditionally independent

given Ay, the conditional variance of (3.2.4) under model (3.2.2) is
V(Frs(y) — Fn(9) | Av) = V(T | Av) + V(Ty | Av) (3.2.11)
which proves (3.2.3). The second variance in (3.2.11) is

V(Tn |Av) = N7V 1(Yi<y) |An}

= N V{I(Yi<y)
= N V{I(U; <
= N2 Z Gu:) [l — G(i:)]. (3.2.12)

The first term on the right hand side of (3.2.11) is

V<TL‘AN> = 2V ZGLZ y—fl?ﬁ)‘AN)
1€AC
= NV(Y G (i) | Ax)
1€AC
= N_2V<Z Z wij[<U]‘ < u2> ‘AN>
1EAC JEA,,

- LY Y (<) | a)

{=1 j€hy i€U,—Ay

B
= N2Y D V(DY wil (U <) | Av),

(=1 j€h, 1€Up—Ay
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because under model (3.2.2) the U; are conditionally independent. The set U, — A, =
U, N A° contains the subindices of nonsampled elements in bin /. Then

B
V(TL ‘ AN> = N7 Z Z Z wiljwiﬂCOV[[(Uj < ml),[(U]‘ < 122'2) ‘AN}

=1 ]EA@ 71 ,i2 GU[—AZ

B
CEY Y ol < i), 10 < i)
f=1 jEhy i1 1o €U —hy
B
= N_2 Z Z Wiy jWisj [G<m1n[u217u22]> o G<u“>G<uZ2>]

=1 ]EA@ 71 ,i2 GU[—AZ

(3.2.13)

By combining (3.2.13) and (3.2.12) we have the result. A

Theorem 3.2.1 shows that the local-residuals estimator (3.1.4) is model unbiased for
the finite population distribution function and has model variance given by (3.2.3). No
asymptotic assumptions are made in Theorem 3.2.1. In Theorem 3.2.2 we consider a
sequence of samples and finite populations indexed by N as described in Section 2.1.2.

The superpopulation model (3.2.14) assumed in Theorem 3.2.2 does not change with V.

Theorem 3.2.2 Let {An} be a sequence of samples selected from the sequence of finite
populations {Ux}. Assume that the sample Ay is divided into By groups, each of size

kn, as described in (3.1.3). Assume the superpopulation model

for i € Uy, with h(x) known. The U; are independent and identically distributed with
EU;) = 0, V(U;) = ¢* and distribution function G(u). Let § be a fived point. Let
h; = h(x;) and @; = h ' [y — x;8]. Assume

A.la The number of indices in Ay, denoted by ny, is such that

NN41 2 NN,
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0< lim N 'ny = f. < 1.

N—oo

A.2a The number of bins and the number of sample elements per bin satisfy

k;fl — O(N—(l—oz))
where ny = Byky and 0 < o < 1.
A3a There exist Ly and Ly such that the number of population elements per bin, Ky,

satisfy

0 < Liky < Kny < Loky < o0
foralll =1,...,By, and
By
Z[(Ng = N.
/=1

Ada There exist LT and L; such that
0 < Liky' < wi; < L3ky' < o0,

-1
forv e AN, 7 € Ay, where w; = w_l{zj,e& W;l} is defined in (3.1.7), and

J

1 .
m. " are the sample weights.

A.ba The term {(N —ny)7t ZieAgv G(u)[1 — G(uz)]} is positive for all N.

A.6a The term {N‘l Dieny VI(Z; ‘AN)} is positive for all N, where
V(Z] ‘ AN) = Z wiljwm [G(mm[u“,uw]) — G(u“>G<u22>],
i1,02€U — Ay
Zi = 3 ieUa, wij[<Uj < u2> for 3 € Ay, { is the bin that contains unit 7, Uy is
the set of indices in bin £ and Ay = Ay NUy. The subindex N has been omitted in

U, and Ay to simplify notation.
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Let ﬁLﬁ(y) be the estimator (3.1.4) with the true 3 used in (3.1.6). The subindex N has

been omitted in FVLﬁ(y) to simplify notation. Then,

(a) The estimator ﬁLﬁ(y) satisfies
dim. P(|Frs(y) — Fn(9)| > € | Av) =0
for all € > 0, where Fn(y) is defined in (2.1.2).

(b) The sequence

[V (Fuoti) — Bxti) [ a0) ) Fupti) - Pt}

converges in distribution to a N(0,1) random variable given Ay, where V(FVLﬁ(y')—

Fn(y) ‘ AN> is given in Theorem 3.2.1 for a population of size N.

Proof. Part (a). By Theorem 3.2.1 we have that
E{Eﬁ(y') — Fv(y) | AN} ~ 0.

Then, to prove model consistency of FVLﬁ(y) — Fn(y) we need to show that the model
variance of FVLﬁ(y) — Fn(y) given in (3.2.3) converges to zero as N — oo. The two

variances that appear in (3.2.3), V' [T}, ‘AN , are given in (3.2.13) and

and V {TN ‘ AN

(3.2.12) respectively. The second component of (3.2.3) is
VITx [ Av] = N7 30 Glan) [t = G
€A
SNT?Y 47 = NN —n)a™t =O(N7),

€A
(3.2.15)

since G/(1;) [1 — G(ul)] < 471 for all 7 € A° and the number of terms in Y icae 18 N —n.

The first term in (3.2.3), given in (3.2.13), is

VIT [ an] = 82303 Y e [Gminli, ) - Gl )G i)

=1 ]EA@ 71 ,i2 GU[—AZ
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The factors G( min[uil,uiz)]) — G(uil)G(ub) are the covariances between two indicator
functions, [(Uj < uh) and [(Uj < 122'2), then,

\G(M[um%]) = G G| < a7t

The model variance of T}, is then,

=1 jEAy 11,i2€U—Ay

B
SN DY D> wijw,

=1 ]EA@ 21 ZQGU[ Ag

— 4Ny Z ( 3 wi])? (3.2.16)

The sum <EieUZ—AZ wij> is O(1) since by A.4a the w;; are O(ky') and the number of
summands is O(ky) by A.3a. Since Ele Dich,
(3.2.16) is then O(N~?n) = O(N~'). Then,

= E]‘GA has n terms, the order of

V{TL \AN} — O(N7Y) (3.2.17)
Then, by (3.2.17) and (3.2.15),

Vv {FVLﬁ(y) — Fn(y) ‘ AN} = O(N™Y),
and
&E@V[ﬁm(y?) — Frn(3) ‘AN} _ o,

which proves the model consistency of FVLﬁ(y) — Fn(y) stated in part (a).
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Part (b). Conditioning on Ay, Ty, and Ty are independent. The term Ty is the
sum of N — ny independent random variables multiplied by N7, Assumption A.5a
is sufficient for the Lyapounov condition for the sum ZieAgv I(U; < 1;) because all

moments exist for the indicator functions. It follows that
{viz | aw]}re{m - e[r [ av] -
~1/2
= (N2 Y G - Gy NS [ < i) - Gl )
1€AS, €A,

_ { 3" Glant - G(m)]}_m{ U < i) - G(fu)]}

i€AS, i€As,

converges in distribution to a standard normal as N — oco. Analogously, T, is the sum
of n independent random variables multiplied by N~!. The random variable T}, defined
in (3.2.5) can be written as

1}/::PV_ljgj(iLa(hflh)—'wﬁﬂ)

€A

=N Z Z wij[<U]‘ < u2>

€A jEAgl.

NI NN wl (U < )

(=1 jehy i€U,— Ay

N‘li >z

(=1 jEA,

=N Y 7,

JEAN

where the Z; = EiEUz—Az wij[<Uj < u2> are defined in A.6a for j € Ay. Given Ay, the
Z; are independent random variables with
E(Z; | Av) = ) wiyGli)
1€U—Ay
and

V(Z] ‘ AN) = Z wiljwm [G(mm[u“, u22]> — G(u“>G<u22>] .

i1,02€U— Ay
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The variables Z; are a linear combination of indicator functions. Condition A.6a is

sufficient for the Lyapounov condition for the sum 3 Z; because all moments exist

JEAN

for the Z;. It follows that
(VI law]je{mw = ey [ av]} =

S ]} (S-S el )
. e e (3.2.18)

converges in distribution to a standard normal as N — oo. Finally, since Ty, and Ty are

conditionally independent given Ay, and
Froli) = Fi(9) = 1o = T,

the sequence of random variables

[V [Fusti) — Fnti) | ax]} " { Fusti) — (i)

converges in distribution to a N(0,1) given Ay as N — oc. A

3.2.2 Case B: E(Y;) = z;6 and V(V;) = ¢(z;)*0?; § known

Chambers and Dunstan (1986) showed that estimator (2.3.4) is no longer model
unbiased when the variance function of Y given z is misspecified. If the conditional
variance of Y given z is not the same function specified in the construction of estimator
(2.3.4), F\cp(y') — Fy(y) is still asymptotically normal, but with mean different from
zero (see Chambers and Dunstan, 1986, Section 3.2). In practice, the variance function
of Y given & may be more difficult to specify correctly than the mean function of YV
given x. Thus, it is important to study the sampling distribution of ﬁL(y) — Fn(y)
under misspecification of the variance function. Theorem 3.2.3 contains some results for
the misspecified case. The subindex N is often omitted in the discussion to simplify

notation.
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Theorem 3.2.3 Let {An} be a sequence of samples selected from the sequence of finite
populations {Ux}. Assume that the sample Ay is divided into By groups, each of size

kn, as described in (3.1.3). Assume the superpopulation model

fori € Uy, with q(x) # h(x), where h(x) is the function used in constructing estimator
(3.1.4). Let hy = h(x;) and ¢; = q(x;). The U; = ¢ '[Y; — x;3] are independent and
identically distributed with E(U;) = 0, V(U;) = a* and distribution function G(u). There
exists an my, such that 0 < my, < h(xz;) < oo for i € Uy. There exists an M, such that
|z:| < M, fori € Un. Let y be a fived point. Let ¢; = ¢ '[y—x:3]. Assume A.la through

Ada from Theorem 3.2.2. Also assume

A.5b The term {(N —nn) "t ZieAgv G(g)[1 — G(qz)]} is positive for all N.

A.6b The term {N‘l dieny V(22

AN)} is positive for all N, where

V(73

AN) = Z Wiy jWig g [G< min[(ﬁlj’ q;]]) o G(qZ])G@;])} ’

11,02€U—Ay

Z]* = EiEUz—Az wij]<Uj < %*]>7J S AN; qZ*] = ql + hz_l(q]_lh] - qZ_lhl)[y - xlﬁ]v (s

the bin that contains unit 3, Uy is the set of indices in bin { and Ay, = Ay NU,.

A.Tb  The distribution function G(u) is differentiable and there exists an My such that

|0G(u)/0u| < M, for all u.

A.8b The functions q(-) and h(-) are differentiable and there exists an Mqh such that
0[q(x) " h(x)]/dx| < My, for all x.

A.9b  The max,(by) = O(By'), where by is the length of bin (.

Let FVLﬁ(y) be the estimator (3.1.4) with the true 3 used in (3.1.6). Then,
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(a) The estimator ﬁLﬁ(y) satisfies

lim P(|Frs(y) — Fn(@)| > ¢ | Av) =0

for all € > 0, where Fn(y) is defined in (2.1.2).

(b) If the value of o in A.2a is greater than 0.5, then the sequence
~ : Uz~ :
(Vo) = @) | an) ) {Frel) - Evi)} - (3.2:20)
converges in distribution to a N(0,1) random variable, where
V(Fus() — Fn(y) | Av) =
B
=N~* Z Z Z Wiy jWiz [G< min[(ﬁlj’ q;]]) B G<q2*1]>G<q2*2]>] +
=1 ]EA@ il,iQEUZ—Ag
+ N GG - Gl
i€As,
Proof. Part (a). Let

Fra(y) — Fn(y) = Tp, — T, (3.2.21)

where Ty, and T are defined in (3.2.5) and (3.2.6) respectively. Under model (3.2.19),

E[I(Y,<y)] = E{I(¢'Yi— 2] < q 'y — 2:8)}
= E{I(U;<q)}

= G(¢) (3.2.22)
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where ¢; = ¢ ' [ — 2;3]. The summands in T}, involve [(hj_l[Yj —z;8) < hity — :1;%3])

All of the following inequalities are equivalent,

WY = i8] < bl — @iff]

¢ 'Y — 28] < q; thihi g — 2]

g g — 2B+ (g5 thihit — g7y — 2ip)
G+ hit gy hy — g7 hi)[y — i3]

U < Gi + b4,

Uj

N

Uj

N

where

Then, under model (3.2.19),

E{I(h'Y; — 2,8 < hi'ly—2:B)} = E{I(U; <4 +d;)}

= G4+ ;).
Using results (3.2.22) and (3.2.25) we can compute
E[Ty | Av] = N30 wiGd + 63)).
1€AC jEAgl.
and

ElTy [Av] =N G(4q)

1€AC

N Y wGla).

1EAC JEAy,

since Zy‘eA@i w;; =1 for all i. Then

E[Fys(y) — Fa(o) | Ax] = NS0 wi{ G +6i5) — Ga)

1EAC JEAy,

(3.2.23)

(3.2.24)

(3.2.25)

(3.2.26)

(3.2.27)

(3.2.28)
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which will in general be different from zero.

We study the magnitude of the model bias of ﬁLﬁ(y) as an estimator of Fy(y). By

the mean value theorem and A.7hb,

‘G@z’ +0i) — G(4:)] < 16551 M,

Then,

B[Feai) — Fu(o) [ Av]| =[N0 3 wil G+ 85) - Gla) )|

€A jEAgl.

SN D e

1€AC jEAgl.

SN D e

1A JE Ay,

{Glas+8) = G(a) }]

5i;| M.

The quantities 5” in (3.2.29) are
Sy = hi (g7 hy — g7 i)y — i8]
as defined in (3.2.24). Under model (3.2.19),

hit = h(z)™ < m;t = 0(1)

for all : € Uy. By A.8b and applying the mean value theorem,

< |T; —

4 thy — ¢ 'h

If the units 7 and j of (3.2.31) belong to the same bin, then

Mqh < < max bg)Mqh = O(B];fl)

T, — T,
I I=1,... By

by A.9b. Finally,

y—wiff = 0(1)

(3.2.29)

(3.2.30)

(3.2.31)

(3.2.32)

(3.2.33)
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because ¢ and 3 are fixed, and |2;| < M, under model (3.2.19). Combining (3.2.30),
(3.2.32) and (3.2.33) we have that

5;; = O(BY"). (3.2.34)
Then, since >, wij =1,

‘E[va(y') — Fn(y) \AN]‘ SNTIY Yy (9| M,

1€AC jEAgl.

SNTIYT D wi0(ByY) = 0By

1EAC JEAy,

(3.2.35)

Then, by A.2a, the model bias of FVLﬁ(y) as an estimator of Fiy(y) decreases at a rate
N~. Then, under model (3.2.19), the local-residuals estimator (3.1.4) is asymptotically
model unbiased. Note that assumption A.9b is essential in proving (3.2.35). Asymptotic
model unbiasedness of Chambers and Dunstan estimator (2.3.4) does not hold when the
variance function of Y given z is misspecified since B = 1 is used in constructing ﬁcp(y').
With B = 1 the model bias in ﬁcp(y') as an estimator of Fi(y) does not converge to

zero as N — oo.
The model variance of ﬁLﬁ(y) — Fn(y) is
V(Fus(i) — Fa(i) | Av) = V(T | Av) + V(T | Av) (3.2.36)

because the Y;,7 € Uy are independent given Ay. Under model (3.2.19), the indicator

functions [<K < y> that appear in Ty have

v[i(vi<i)] = v]i(a - a8 < o' - 28))]



38

Then,

V(Tw [ax) = V(NS 10 <) | Av)

€A,
=N} v(mg <) | AN>
i€AS,
=N G - Glg)- (3.2.37)
€A,

By (3.2.23) we have that,

V(7 av) = V(NS DT el (07 — a8 < b7l — i) | Av)

1 ]EA@ iEUZ—Ag

where ¢f; = ¢; + 5” is defined in A.6b. Then, since under model (3.2.19) the U; are

independent,

V<TL ‘AN> = V(N_l EB: Z wij[(U]‘ < qjj) ‘AN>

(=1 jehy i€U,— Ay

B

=NEYST N e Cov [0 <) 10 < d3y) | An]
(=1 jEAy 11,10€U—Ay
B

= N2 Z Z Wiy jWisj [G< min[qu Q:;]]) - G(q%)G(q&)} :
(=1 jEAy 11,10€U—Ay

To study the asymptotic properties of (3.2.37) and (3.2.38), recall that the variances
G(¢)[1 — G(4i)] that appear in (3.2.37) are bounded by

Gg)[l — G(g:)] < 0.25
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and that the covariances G/( min[g; .. ¢} .]) — G/(q;;)G(q;;) that appear in (3.2.38) are
bounded, in absolute value, by
|G (minld?, ;. 7,50) — G(d5;) G (d5,;) | < 0.25.
Then,
V<TN \AN> <ATINT = O(NTY) (3.2.39)

and

V(I a) <SS (O @)

{=1 jEA, 1€U—Ay

as in (3.2.16). Then, by the same argument that is used in (3.2.17),
V(TL \AN> = O(N7Y). (3.2.40)
Combining (3.2.40) and (3.2.39) we have that
v{ﬁm(y') — F(y) | AN} = O(N7Y). (3.2.41)

By result (3.2.35), FVLﬁ(y) is asymptotically model unbiased for Fix(y), and, by (3.2.41),
the model variance of ﬁLﬁ(y) — Fiv(y) converges to zero as N — co. Thus, we have that
the local-residuals estimator is model consistent for the finite population distribution

function under model (3.2.19).

Part (b). We will use an argument similar to the one used in proving part () of
Theorem 3.2.2. The terms 77, and Ty that appear in (3.2.21) are independent given Ay.

By assumption A.5b,
{viry | an) {1y - BTy | Av)} =

= {3 Gl - Gt} {8 Y [0 < i) - Gl }

1EAS, i€AS,

{3t - G(%’)]}_l/z{ >l < i) - Gan) |

1€AS, i€AS,

(3.2.42)
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converges in distribution to a standard normal. The term 77, can be written as

Ty = N30 3wt (07 — 28] < by — i)

ZEAN JEA,

Yy Y il (U; < )

(=1 jehy i€U,— Ay

by (3.2.23), where ¢5; = ¢; + 5” is defined in A.6b. Using the Z7 defined in A.6b,

25 =) ict—n, wij[<Uj < q;}),] € Ay, we have that

J
B
T,=N"'> > 7z

(=1 j€h,

=N"'Y 7

JEAN

Then, by A.6b,

{V(TL \AN)}—I/Q{TL — (T}, \AN)} _

- {N‘2 Y Viz AN)} v { "N 2 - NTE(Z AN)}
JEAN JEAN
={> vz AN} S 7Bz |an)
JEAN JEAN
converges in distribution to a standard normal. It follows that
. | R
{V<FLﬁ(y) — Fn(y) \AN)} {FLﬁ(y) — E(Fis(9) | AN)}
(3.2.43)

converges in law to a N(0,1). To find the limiting distribution of

{V<FVLﬁ(y') — Fn(y) | Av) }_I/Z{ﬁm(y') - FN(y)}

we consider the fact that the model expectation of ﬁLﬁ(y) — () is O(By'), while the

model variance is O(N™!). Since by assumption a > 0.5,

E[{V(Fiai) — Bxti) | an)} sl = Puin} | an] = o(a0-2)
= o(1).
(3.2.44)
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Therefore, we can replace E(ﬁLﬁ ‘ AN in (3.2.43) with Fy(y) to obtain the limiting

distribution of (3.2.20). A

3.2.3 Case C: Y, ~ Gy(y;x;); 5 known

In Section 3.2.2, we proved that the local-residuals estimator is robust against mis-
specification of the variance function. In this section we study the case when both mean
and variance of Y are misspecified. The superpopulation model that describes the rela-

tion between Y and « is such that E[Y;

z;] and V(Y;

x;) are not restricted to be ;4 and

h(x;)*c? respectively. The residuals [V(Yi :1;2)] iz [K—E(K

:1;2)] are independent, but
the residuals are no longer restricted to be identically distributed. The superpopulation

model (3.2.45) in Theorem 3.2.4 is specified in terms of the distribution of Y given x.

Theorem 3.2.4 Let {An} be a sequence of samples selected from the sequence of finite
populations {Un}. Assume that the sample Ay is divided into By groups, each of
size ky, as described in (3.1.3). Assume a superpopulation model where the Y; are

independent and
P(Y; <y ‘ z;) = Gy (y; ;) (3.2.45)

for i € Un. Let h; = h(x;), where h(-) is the function used in constructing estimator
(3.1.4). Assume that there exists an my, such that 0 < mj, < h(xz;) < oo fori € Un. Let

y be a fived point. Assume A.la through A.4a from Theorem 3.2.2 and

A.5c For all N, { —ny)” ZGA?v Gy (y; 2:)[1 — Gy (y; :1;2)]} is positive.

A.6c For all N, {N Z]GAN Z ‘AN } is positive, where

V(Z; |Ax) = Z Wiy j Wiy |Gy (minfii,j, Jiys ) 25) — Gy (G353 25) Gy (i, 25) |

11,i2€Up—Ay
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Z; = Z wii 1(Y; < ij),j € An,
1€U— Ay
Gij = 9+ hi(h =3+ hy(hT ey — b)),
{ is the bin that contains unit 7, U, is the set of indices in bin { and Ay = Ay NU,.

A.7c The distribution function Gy (y;x) is differentiable in y and x, and there exists
an M,, such that |0Gy (y;x)/dy| < M,, and |Gy (y; z)/dx| < M,, for all y and

x.

A.8¢c The positive function h(x) is differentiable and there exists an My, such that
[hj(ht = h7 g+ hy(hy ey — hited) Bl < s — [ My
for all x.

A.9c The maxy(by) = O(By'), where b, is the length of bin (.
Let FVLﬁ(y) be the estimator (3.1.4) with the true 3 used in (3.1.6). Then,

(a) The estimator ﬁLﬁ(y) satisfies

lim P(|Fra(y) — Fa(§)] > € [ Av) =0

N—oo

for all € > 0, where Fn(y) is defined in (2.1.2).
(b) If the value of o in A.2a is greater than 0.5, then the sequence

{V(Frsy) - Fut) | AN)}_I/Z{FVLﬁ(y) ~ Fn()} (3.2.46)

converges in distribution to a N(0,1) random variable, where

B
V(Fra(@) = Fi(g) [Av) = NT2Y % 0 wijuwiy X
{=1 j€Ay 11,12€U— Ay

< [Gy (min[gi,;, §i,i]i 25) — Gy (G55 25) Gy (G55 75) | +

+ N7 Gy ()1 — Gy (9 2)].

ichs,
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Proof. Part (a). Let
Frs(9) — Fn(y) = T, — T, (3.2.47)

where 17, and Ty are defined in (3.2.5) and (3.2.6) respectively. We will compute the
expected value under model (3.2.45) of the indicator functions / <h;1 [Yi—2,;8] < hi'[y—
:1;2[3]> and [<K < y> that appear in the definitions of 77, and T respectively. The

following inequalities are equivalent

hi' Yy — ;8] < hi'y — 2]

Y, a8+ hihi 'y — i)

Vi Sy hi(h = h7Ng + hihy ey — e
Y, <+ 0 (3.2.48)
Y5 < Ui (3.2.49)
where 5” in (3.2.48) is
8ij = hi(hi* = hy )y + hy(h ;= hi'a:)B (3.2.50)

and §;;, =y + 5” is defined in A.6¢. Then, under model (3.2.45) we have that

E{I(R'Y; — 28] < hi'ly—=:B)} = B{(Y; <y+dy)}

= Gy(y+0i:z;) (3.2.51)
and
E[1(Y; <9)] = Gy (y; ). (3.2.52)
Using (3.2.51) and (3.2.52) we have that
BTy [Av)= N7 00> wiGy (54 b5 ;). (3.2.53)



64

and

E[TN ‘AN] =Nt Z Gy <y; xz)

i€hs,

= N1 Z Z wijGY <y,$2>, (3254)

because » .., wi; = 1 for all i € A§. Then, the model bias of ﬁLﬁ(y) as an estimator
of Fn(y) is
E[Fra(i) — Fn() | Av] = N0 " wi{Gy (9 + b 25) — Gy (g32:) }
1€AC jEAgl.
(3.2.55)

which in general will be different from zero. The difference between distribution functions

in (3.2.55) can be written as
Gy (§ + dijs2) — Gy (g5 23) = [Gy (9 + dijs ;) — Gy (g3 27)] + [Gy (9 25) — Gy (95 21)].
Then, by the triangular inequality,

Gy (§ + dijs ;) — Gy (93 2;)

< ‘Gy(y' + 52']‘; z;) — Gy (y; x;)

+ ‘GY@;SL‘J‘) — Gy (95 1)
(3.2.56)

Applying mean value theorem and A.7c on the right hand side of (3.2.56) we have that

Gy (g + 5¢j; x;) — Gy (g;2:)| < <|5z’j| + |z; — $i|>Mgg

< oy — x2|(th + I)Mgg
by A.8c. Since units ¢ and j are in the same bin, |z; — ;| < max,(b;), then

Gy (7 + 055 2;) — Gy (95 21)| < mjx(bé)(th + 1) M,,

= O(BYY) (3.2.57)
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by A.9c. The model bias of the local-residuals estimator is then

‘E[va(y) — Fy(y) | Ax] ‘ <N Z Z wi |Gy (§ + diji2;) — Gy (3§ ;)

€A jEAgl.

=Ny Y wiO(By)

1€AC jEAgl.

= O(B7). (3.2.58)

Since by A.2a we have that B — co as N — oo, we have that ﬁLﬁ(y) is asymptotically
model unbiased for Fy(y). Note that (3.2.58) indicates that the model unbiasedness
holds even when both the mean function and the variance function of Y given x are

misspecified.
The variance of ﬁLﬁ(y) — Fn(y) given Ay is
V(Fuo(y) — Fn(p) | Av) = V(Tz | Ay) + V(Tx | Av) (3.2.59)

because the Y;, i € Uy are independent under model (3.2.45). The model variance of Ty
is
V(In [Ax) = V(NT' Y 1Y <9) | Ax)
i€As,

= N7 Gy (g )l — Gy (;20)] (3.2.60)

i€AS,
Using (3.2.49), the model variance of T}, is

V(e ax) = v (T XB: SN wul (b - w8 < G - @) | Av)

(=1 jEA, 1€U,—Ay

:v<N—1§:Z > wil (Y < i) \AN>7

(=1 jehy i€U,— Ay
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where §j;; is defined in A.6c. Then, since under model (3.2.45) the Y; are independent,

V(TL \AN> - V<N_1§: SN Wl (Y <) \AN>

(=1 jEA, 1€U,—Ay

N—zizv< > wiI (Y < i) \AN>

=1 jEA, 1€U—Ay

=NTY DY wiwin Cov [1(Y) < i), 1Y) i) | An]
B
- Z Z Z Wiy jWiyj X

=1 ]EA@ 71 ,i2 GU[—AZ

I
=2

x [Gy (minfgi,, §i,i]: 25) — Gy (G55 25) Gy (Fingi 7)) -
(3.2.61)

As in Theorem 3.2.3, to study the asymptotic properties of (3.2.60) and (3.2.61),

recall that the variances Gy (y; «;)[1 — Gy (y; x;)] that appear in (3.2.60) are bounded by
Gy (g3 0)[l — Gy (g 2:)] <471

and that the covariances Gy(min[gilj,gm];xj) — Gy (gilj;xDGY (gm;xj) that appear

in (3.2.61) are bounded, in absolute value, by
|Gy (minlgij, G} ;) — Gy (§igs 25) Gy (G 2;) | <A™
Then,
V<TN \AN> <ATINT = O(NTY) (3.2.62)

and

V(I a) <SS (O @)

{=1 jEA, 1€U—Ay

as in (3.2.16). Then, by the same argument that is used in (3.2.17),

V(TL \AN> = O(N7Y). (3.2.63)
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Combining (3.2.63) and (3.2.62) we have that
V{ﬁLﬁ(y) — F(y) | AN} = O(N7). (3.2.64)

By result (3.2.58), FVLﬁ(y) is asymptotically model unbiased for Fix(y), and, by (3.2.64),
the model variance of ﬁLﬁ(y) — Fin(y) converges to zero as N — oo. Then, we have that
the local-residuals estimator is model consistent for the finite population distribution

function under model (3.2.45).

Part (b). We will use an argument similar to the one used in proving parts (b) of
Theorem 3.2.2 and Theorem 3.2.3. The terms Ty, and Tx that appear in (3.2.47) are

independent given Ay. By assumption A.5c,

{V(TN \AN)}—I/Z{TN — B(Ty \AN)} -

= {N—2 Z Gy (y; 2)[1 — GY(y';xZ»)]}_l/z y

X {N—l Z [I(Y; < g3 2:) — Gy (¥ :L'Z)}}
— { Z Gy (y; )1 — GY(y';:I;Z»)]}_l/Q y

X { Y <) - GY@;%’)}}

€A,

(3.2.65)

converges in distribution to a standard normal. The term 77, can be written as

T,=N"Y ) wiﬂ(h;l[yj — 28] < ATy — xzﬂ]>

= N_IEB: >y wn1<Yj < yy)

(=1 jehy i€U,— Ay
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by (3.2.49). Using the Z; defined in A.6¢c, Z; = D ieU—hy wi; I(Y; < §i;).7 € An, we

have that
B ..
=N > 7
(=1 jEA,
=NT> " 7.
JEAN
Then, by A.6c,

{V(TL \AN)}‘”?{TL — (T}, \AN)} _

(v v ) Yz vz |

JEAN JEAN

vz a0} Y 2w an)

JEAN JEAN

converges in distribution to a standard normal.
To find the limiting distribution of

[V (Fupti) — Bxti) | )} { Faoti) - vt}

recall that the model expectation of FVLﬁ(y) — Fx(y) is O(By'), while the model variance
is O(N™'). By A.2a, By = O(N®), and by the assumption that o > 0.5,

E HV(FVLﬁ(y') — Fn(y) | AN)}_l/Z{FLﬁ(y) - FN(y)} | AN} = O(N'/*=)

= o(1),
(3.2.66)

and the distribution result follows. A

Part (a) of Theorem 3.2.4 shows that the local-residuals estimator of the finite pop-
ulation distribution function is model consistent even in the case when both the condi-
tional mean and the conditional variance of Y given x are misspecified. The assumption
that the maximum of the bin lengths goes to zero as N increases is crucial for the local-

residuals estimator to be model consistent under misspecification of the conditional mean
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and the conditional variance of Y given . We need « > 0.5 for the bias in the sum to
go to zero faster than the standard error as N — oo. Although, oo > 0.5 is not necessary
for the model consistency of FVLﬁ(y) — Fn(y). However, if « is close to 0.5 the rate of

decrease in the bias is small.

We will construct a model consistent estimator of the variance of ﬁL(y) — Fn(y)
based on the local-residuals estimator. Let
Gy (g = Y wyl (Vi <), (3.2.67)
]eAfl
be the local estimator of the conditional distribution function of Y for @ = a;, evaluated

at the point g, where

Yy = @i+ hih Y — @8], (3.2.68)

In Corollary 3.2.1 we demonstrate that éy(l}; x;) is model consistent for Gy (; x;) defined
in (3.2.45). We use éy(l}; x;) to construct model consistent estimators of the components
of V(ﬁL(y) — Fn(y) ‘ AN>, where the components are

B

TCATS IR =030 2 SR
f=1 jE€EA; 11,i2€U—Ay
< [Gy (minffi, g, Jis] 25) = Gy (i 25) Gy (a3 25)]
(3.2.69)

defined in (3.2.61) and
V(I |Ax) = N2 Gy (i)l — Gy (55 24)] (3.2.70)
iE€AS

defined in (3.2.60).

Corollary 3.2.1 Assume A.la through A.4a from Theorem 3.2.2. Assume that the
value of o in A.2a satisfies 0 < o < 1. Let the model 3.2./5 hold, and assume A.5c
through A.9c from Theorem 3.2.4. Then,
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(a) For any y and x; with i € Uy, estimator éy(l}; x;) satisfies

N—oo

lim E(‘éy@; x;) — Gy (5 i)

| AN> — 0,
where éy(yv;xi) is defined in (3.2.67) and Gy (y; ;) is defined in (3.2.45).

(b) The estimator

\7<TL ‘ AN> = N7? EB: Z Z Wi, jWiyj X

=1 ]EA@ 71 ,i2 GU[—AZ

X [GY(miﬂ[Qmaﬁm]; v;) — Gy (753 l‘j)éY (i1 25)]

(3.2.71)
of V(Ty, ‘AN) given by (3.2.69), satisfies
Jim BE(N|V(T0 | Av) = V(TL | Av)| [ Ay) =0
for any ¢ > 0.
(¢) The estimator
V(In |Ay) = N2> Gy (grai)[l — Gy (§; )] (3.2.72)

iehs,
of V(Ty ‘AN) given by (3.2.60), satisfies
Jim B(N|V(Ty [Av) = V(Tw | Av)| [Ax) =0

for any ¢ > 0.

Proof. Part (a). By (3.2.48), (3.2.50) and (3.2.68), all of the following inequalities

are equivalent,
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Thus, the estimator (3.2.67) can be written as

CN?y(yV; r;) = Z wz’j[ON/z'j < g)

]eAfl

=) wil(Y; <G+ i)

JEA;
Under model (3.2.45), the conditional expectation of éy(l}; x;) is,

E@Y(ﬂ; ;) \AN> = E< D wi 1(Y; <+ b)) ‘AN>

]eAfl

= > @Gy (9 + b 7).

]eAfl

By (3.2.57) we have that

Gy (yv—l-gij(ﬁ); l’j) — Gy (1; :1;2)} is O(B]Ql) forall/ =1,..., By,
i € Uy— Ay and j € Ay Because the O(By') upper bound is given for the maximum

difference between x; and x; when ¢ and j are in the same bin, by (3.2.57) we have

Y ".4' . J— YD . —_— _1
B e e O 0+ Bis) = Gl } = O(BR

(3.2.73)
Then,

E(@z(yf; i) — Gy (5 i) | AN) =) w {GY (9+ bij(07: 25) — GY(%“/V)}

]eAfl

= Y wiO(By') = O(By). (3.2.74)

]eAfl

Furthermore, by A.4a, we have

0 < Liky' < w;ij < L3ky' < o0,
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where w;; = 7 -t {E] en, T ,1} . Therefore, it follows that w}; = O(ky*) for all ¢ € Uy,

j € Ay. Then,

V@Y@; i) — Gy (; ;) \AN> =

JEA,

= > wWHGy (I + b i) [L = Gy (§ 4 iy )]
JEA,

<Y O™ = O(ky") (3.2.75)
jeAZl‘

Then, by Jensen’s inequality, (3.2.74) and (3.2.75),

{EQGY@ i) —Gy(ga >}2 < E(‘GY@;%) — Gy (y32:) 2 \AN>
= {E(éy(yf,x) Gy (y ‘ANHZ
+ V(G (i) = Gy (2) | Av)
= O(By") + O(ky"), (3.2.76)
hence,
E<‘éy(yf ) = Gy ()| | AN> = O[maz(By', ky"'?)]. (3.2.77)

Because, by assumption 0 < a < 1 for the value of a in A.2a, By — o0 and ky — oo

as N — oo,

E<‘CN?Y( i) — Gy (9

) — o(1), (3.2.78)

and the result follows.

Part (b). Results (3.2.74) and (3.2.75) are independent of § and of the indexes ¢,
and (. The order of (3.2.74) depends on assumption A.9¢c, that the mawx,(b;) = O(By'),
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which is independent of ¢, § and x;. The order of (3.2.75) depends on assumption A.4a
about the order of w;; as N — oo, which is also independent of ¢, § and z;. Because of

(3.2.78), we have that

E(‘ [éy<min[gi1j7 giﬂ]; xj) - éY (Qm‘; $j>éY <gi2]‘; l’])]

— [Gy (min[iji,;, §i,5]; 2;) — Gy (i3 2;) Gy <gizj;xj>]‘ \AN> = o(1),

for any units 77, 13 and 7 that belong to the same bin /. Then,
E(N[V(T0 | Ax) =V (T1 | Av)] | Av) =

B
:E(‘N_lzz Z Wiy jWisi X

(=1 jEA; 11,10€U—Ay
% {[éy(miﬂ[ﬂmaﬁm]; ;) — Gy (irji 25) Gy (i 27)]

— [Gy (minfi,;, §irs]s 25) — Gy (i3 25) Gy (g5 75) | H \AN>

B
SN D D iy X

(=1 j€he ir i€l Ag
X E(‘ [Gy (minf§i, ;. §ir, ] 25) = Gy (g3 2,) Gy (i3 ;)]

)

— [Gy (min[§i, ;. Jips)s 5) — Gy (Firgs 25) Gy (i3 25) ]
B

= N_l Z Z Z Wiy jWiy; X 0(1)

=1 ]EA@ 71 ,i2 GU[—AZ

= o(1)N"! EB: 3 < 3 wi])?. (3.2.80)

(=1 j€h, 1€Up—Ay
By arguments similar to those used in (3.2.17), we have that the order of the right hand
side of (3.2.80) is o(1). Thus, N‘N/<TL ‘ AN> converges to NV(TL ‘ AN> in L.

Part (¢). As in part (b),

(|G s w1 = Gy (55.20)) = Gy (51 = G (G5

\AN> — o(1).
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Then,

E<‘N[‘N/<TN ‘AN) — V(TN ‘ANH‘ ‘AN> _

= B[N Y {Gr (el = Gy (i)

ichg
— Gy (e[l = Gy (G | [ A)

<N B(|Gr (gl - Gy (g00)

1EAS,
~ Gy ()l = Gy (Ga)]| | Av)
=NT) ol
iehs,
= o(1),
Thus, NV (T | Ay) converges to NV (T | Ay) in L. A

In section 3.3 we will use the results (b) and (¢) from Corollary 3.2.1 to construct a

variance estimator for ﬁLﬁ(y) — Fn(9).

3.2.4 Case D: Y, ~ Gy(y;z,); 0 estimated

In this section we study the properties and distribution of F\L(y) when the parameter
0 is estimated by B\ given in (3.1.5). As in Section 3.2.3, the assumptions about the
superpopulation model are specified in terms of the conditional distribution of ¥ given
x. We will prove in Theorem 3.2.5 that the results of Theorem 3.2.4 hold when the
parameter [ is estimated from the data. Thus, the local-residuals estimator is model
consistent for the finite population distribution function and approximately normally
distributed, even if both the mean and the variance of Y given = are misspecified in the

superpopulation model.
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Theorem 3.2.5 Let {An} be a sequence of samples selected from the sequence of finite
populations {Un}. Assume that the sample Ay is divided into By groups, each of

size ky, as described in (3.1.3). Assume a superpopulation model where the Y; are

independent and

P(Y; <y ‘ z;) = Gy (y; ;) (3.2.81)

fori € Un. The set {x1,x9,... ,xn} is assumed fived and known. Let h; = h(x;), where
h(-) is the function used in constructing estimator (3.1.4). Assume that there exists
an my, such that 0 < my, < h(x;) < oo fori € Uy. Assume A.la through A.4a from

Theorem 3.2.2, and A.5¢ through A.7c from Theorem 3.2.4. Also assume
A.8d The positive function h(x) is differentiable and there exists an My, such that
|hj(hj—151/’j —h7'w) < ai — :1?]‘|th
for all x.
A.9d  The max,(by) = O(BY"), where by is the length of bin (.
A.10d The sequence of {x; 11 € An} is such that |Z§— Bl = 0,(N~?),

Let F\L(y) be the estimator (3.1.4) with the estimated 3 used in (3.1.6) and let FVLﬁ(y)
be the estimator (3.1.4) with the true 3 used in (3.1.6). Then,

(a) The sequence
NV FL () — Fra)}

converges to zero in probability for a fixed point y.

(b) If the o of assumption A.2a is greater than 0.5, then the sequence

WV (Froti) — i) | an) ) { Puti) — By}
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converges in distribution to a standard normal random variable, where V(ﬁLﬁ(y') —

Fn(y) ‘ AN> is given in Theorem 3.2./.

Proof. Part (a). The estimation error {F\L(y) — FN(y)} can be decomposed into two

parts,

(3.2.82)

For N1/? [F\L(y) — ﬁLg(y)] to converge to zero in probability, we need to show that

for any A > 0 and ¢ > 0, there exists V). such that N > N,. implies that
P(NYFy(g) — Frs(y)] > M | Ax) < e (3.2.83)

Let Dy be the event Dy = {N1/2|ﬁL(y) - ﬁLﬁ(y)| > )\}. By assumption A.10d, for
any € > 0 we can find n = O(N~"/%) and N, such that for N > N,,

P(|B—8l=n) <e/2.
Then for all N > N,

P(Dy |Ax) = P(IB—8=n)P(Dy | A, |13~ 8]=n) +

P(|3 =8| <n)P(Dy | Av,|B =B8] <)

< €¢/2+
P(|B—6| <n)P(Dy ‘AN7|B—5| <)
< ¢/2+ P(Dy | An, 18— 8] <n). (3.2.84)

We extend the notation for 5” defined in (3.2.50) to

dijiey = hyj(h7

C— BTG+ hy(RT ey — )b, (3.2.85)
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to make explicit whether 5” is computed using 3 or 23\ Let
Ay = 1(Y; < §+055) = 1(Y; i+ b))
By (3.2.48), we have that

N7 Y el () <t dy5) -

SN Y wp (Y <+ 52';(5))‘
i€AS JEA,
SN N wy

:N_1/2 Z wa

N2y (9) — Fral)] = NV

1(Y; i+ 85) = 10V <9+ 8500)|

. (3.2.86)

We will prove that (3.2.86) converges to zero in L; conditional on Ay and |Z3\ — Bl <n,

that is,

E{N_I/QZ Z wij | Ayl ‘AN7|B—5| <n| —0 (3.2.87)

1€AC jEAgl.

as N — oo. Note that, conditional on Ay and |Z§— Bl <n,

|A;;| can only take the values 0 or 1,

|A;;| =1 only when
940,55 < Y5 <9+ b o
i+ < Vi i+ by,

. 5ij(b) is a monotone function of b,

° 5ij(§) is then restricted to be between

my = min <5ij(ﬁ+77)7 5ij(ﬁ—77)> and ]\477 = Imax <5ij(ﬁ+n)7 5ij(ﬁ—77)>7
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e by (3.2.50), the distance between m,, and M, is

M,y — 1m0y = [85j(61n) — Sij(5—n)]
=[(B+n)—(8—n)| x |hj(h; w; —h7'z;)|

= 2n|h;(hi ey — hita)|. (3.2.88)

The expected value of (3.2.86) given |Z§— Bl < nand Ay is

E[N‘I/QZ Z wii| A ‘AN7|B—5| <] =

1€AC jEAgl.

— N‘l/QZ Z CUZ']‘E<|Aij| ‘ |B—5| < 77)

1A JE Ay,

_ N—l/QZ Z wijP<|AZ’]‘| =1 ‘ |B_6| < 77)’
1EAC JEA,,

(3.2.89)

with

P(§+ 80 < Yi <+ M,)
= Gy(y+ M) — Gy (y+my ;). (3.2.90)
An upper bound for (3.2.90) is
Gy (§ + My a;) — Gy (5 + mys ;) < (M, — my,) My, by A.7d
= 2|k (ke — hita) | My, by (3.2.88)

< zn(m?xbg)thMgg. (3.2.91)

The order of (3.2.91) depends on the order of n and max, by, since for a fixed y both
My, and Mgg are constants. By A.10d, n = O(N~'/2) and, by A.9d, max, b, = O(Bxy").
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Substituting (3.2.91) into (3.2.89) we have that
BINT2Y > wil Ayl | Avy|B =5l <] =

= N2 W PlIAG =1 | Ax, 15 - 8l <]

SNTVEYD D 2nomas ) M N

=N N W, 0N O(BR

=O(NT'By) Y > wy

= O(By'), (3.2.92)

since D .o, wij = 1. By A2a, By = O(N®) — oo as N — oo, which implies that
(3.2.86) converges to zero in Lj. Then, conditional on Ay and |Z§— Bl < n, (3.2.86)
converges to zero in probability, and we can find N7, such that for any N > N7,

PINTVES TN Wil Ayl > A [ AxL 8- 8l <) < /2. (3.2.93)

Fu(9) = Fre(y)
rence of the event Dy = {Nl/2

{N_1/2 ZieAgv E]EAQ Wij
Fulg) — Fuai)| >0} < (V1230 3w

By (3.2.86), N'/2 Ay

. Then, the occur-

N2 ZieAg\, Z]‘eA@i Wij

(y) — ﬁLg(y)‘ > )\} implies the occurrence of

<
Fy

> )\}. In other words,

Dy = {NW Ais

>)\},

and

> A \AN,|B—6|<77) <e/2
(3.2.94)

P(Dy | An. 5= Bl <n) <P(NT2Y" 3wy

for all N > N3 by (3.2.93).
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For all N > max(N,., Ni.), we have that both (3.2.84) and (3.2.94) hold. Then for
any N > max(N,., N3,)

P<N1/2|ﬁL(y) — Frs(i)] > A |Ax) = P(Dn |Ax) <e.

Hence,

N—1/2

Fr() - FVLﬁ(y')‘ — 0

in probability.

Part (b). We can write each of the terms of the sequence

[V (Fusti) — Bxti) | A0} { Pui) — (i)

as

{V (Fai) — Fw(i) | M)}‘”Q{E@) — F(j)} =

= V(o) - (i) | a0) ) [ Futi) - Froti)) +
V(i) - i) | a6)) " Fuoti) - i ).
(3.2.95)

In part (a) we showed that NI/Q{F\L(y') — ﬁLﬁ(y)} converges to zero in probability as
N — oo. By (3.2.64) we have that V(FVLﬁ(y') — Fn(y) ‘ AN> is O(N™1). Then the first
term on the right hand side of (3.2.95),

[V (Fusty) - mxt) | ax) ) {Fold) — Fustin}
converges to zero in probability. By Slutsky’s theorem, we have that

[V (Fusty) ~ mxt) | an)} T { B~ Pt}
and

[V (Fuatiy - pxti) | )} { Fuoti) - i)}

have the same asymptotic distribution given by part (b) of Theorem 3.2.4. A
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3.3 Variance Estimation. Confidence Interval Construction

Chambers and Dunstan (1986) present an estimator for the variance of the estimation
error of ﬁcp(y'). The variance of ﬁcp(y') — Fn(y), shown in (2.3.8), has two terms,
one term that depends on the sample units, denoted by WZ(y, 3), and one term that
depends on the unobserved units, denoted by W, (¢, 3). The term W3(y, ) is similar
to the term V(TL ‘ AN> that appears in (3.2.61), except that V(TL ‘ AN> does not
contain the variation due to the estimation of the parameter 5. The terms W.,(y, )

and V(Tn ‘ Ay ) are equal up to a constant, V(Ty ‘ Ay) = (1 —nN"YY2W,(y,0). .

Rao, Kovar and Mantel (1990) present a variance estimator for F\RKMdm(y') that is
the variance estimator of a difference estimator. However, Rao, Kovar and Mantel (1990)

do not give an estimator for the variance of ﬁRKMdm(y') — Fn(9).

In this section we will present estimators for the variance of the estimation error
ﬁL(y) — Fn(y) and the variance of the estimator F\L(y) as an estimator of the super-
population distribution function. The estimator of the variance of ﬁL(y) — Fn(y) is
based on the variance of ﬁL(y) — Fy(y) given in Theorem 3.2.4. For the variance of
ﬁL(y) — F(y) we present two estimators that are based on the Jackknife resampling
method. Another estimator of the variance of F\L(y), based on the distribution of the

Zj defined in assumption A.6c of Theorem 3.2.4, is also suggested.

In Theorem 3.2.5 we showed that FVLﬁ(y) and ﬁL(y) have the same limiting distri-
bution. The effect of estimating 3 is of smaller order, O(N~*By'), than the order,
O(N™1), of the variance of estimators FVLﬁ(y) and ﬁL(y) We will consider the variance
of ﬁLﬁ(y) — F(y) and the variance of FVLﬁ(y) — Fn(y) as approximations to the variance
of ﬁL(y) — F(y) and the variance of ﬁL(y) — Fn(y), respectively. Furthermore, since by

A.10d, |Z§— B| = 0,(N~Y?), we will replace 3 by 3 to estimate the variances of Fra()
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and Frs(y) — Fa(y).

3.3.1 Estimation of the variance of Fis(j) — Fn(y)

By Theorem 3.2.4 and (3.2.59), the conditional variance of ﬁLﬁ(y) — Fn(y) is

V(Fra(y) — Fx(9) | Av) = V(Ty | Av) + V(Tn | Av). (3.3.1)
where
B
V(TL ‘AN> :N_QZZ Z Wiy Wiy X
=1 jEA, t1,02€U— A,

x [Gy (minfgi,, §i,i]: 25) — Gy (Gig325) Gy (Jingi 1) ]

and

V(TN ‘ AN> = N_2 Z Gy(y,l'z)[l - Gy(y,l'z)]

i€hS,
The term 77, is the part of FVLﬁ(y) — Fy(y) that depends on the sample units. The
term Ty is the part of the estimation error that depends on the nonsample units. The
following Theorem suggests a model consistent estimator for the analytical variance,

given in (3.3.1), of Frs(y) — Fx ().

Theorem 3.3.1 Assume A.la through A.4a from Theorem 3.2.2. Assume that the value
of a in A.2a satisfies 0 < o < 1. Let the model 3.2./5 hold, and assume A.5c through
A.9c¢ from Theorem 3.2.4. Then,

lim P<

N—oo

Vo) = V(Fus(i) — Fn(9) | Av)| > ¢ | AN> =0,
where
Vie() = ‘7<TL \AN> + \7<TN \AN>, (3.3.2)

\7<TL ‘ AN> is defined in (3.2.71) and \N/<TN ‘ AN> is defined in (3.2.72).
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Proof. By part (a) of Corollary 3.2.1 we have that Gy (y;z;) is model consistent
for Gy (§; z;), where Gy (y; 2;) is defined in (3.2.67). Moreover, by parts (b) and (c) of
Corollary 3.2.1, nV (Ty, | Ay ) is model consistent for nV (Ty | Aw) and nV (T | Ax)
is model consistent for nV (T | Ay ). Therefore, from (3.3.1) an (3.3.2), it follows that
(3.3.2) is model consistent for V (Frs(g) — Fy(9) | An). A

Note that estimator (3.3.2) allows us to evaluate the contribution of each component
of the estimation error, the part due to the sample, and the part due to the unobserved
units. In Theorem 3.3.2 we show that \N/ee(y) can be used to construct tests of hypotheses

and confidence intervals for FVLﬁ(y) — Fn(9).

Theorem 3.3.2 Assume A.la through A.4a from Theorem 3.2.2. Let the model 3.2./5
hold, and assume A.5c through A.9c from Theorem 3.2.). Also assume that the value of

a in A.2a satisfies 0.5 < o < 1. Then,

{V%@)}_I/Q{Eﬁ@) ~ Fa(y) (3.3.3)

converges in distribution to a N(0,1), where \Ze(y) is defined in (3.5.2).

Proof. By Theorem 3.2.4,

{V<FVLﬁ(y') — Fn(y) | Av) }_I/Z{ﬁm(y') - FN(y)}

converges in distribution to a N(0,1). By Theorem 3.3.1, n\N/ee(y) converges in proba-
bility to nV (Frs(g) — Fn(y) | Av). Then,

{V<FL5( )= Fn(y) | Av) } I/Z{FLﬁ(y') —FN(Q)} =
{ y)} Y {FLﬁ FN(y)}—|-
+ <{Vee(y)} v {V<FL5( ) — ‘AN } 1/2>{FL5( ) — Fin( )}
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The last term in the right hand side of (3.3.4) converges to zero in probability. Thus,
by Slutsky’s Theorem,
T |
Ve ) {Fuoti) - v}
and
~ : A :
{V(Fra) = i) [ An) b { Fusti) - Pni)}

have the same limiting distribution, given by Theorem 3.2.4. A

By Theorem 3.3.2, we can use \N/ee(y) and (3.3.3) to construct confidence sets and do

hypothesis testing for the finite population distribution function Fn(y).

3.3.2 Estimation of the variance of Fi5(j) — F(§)

The estimator F\L(y) is a weighted mean of indicator funtions as shown in (3.1.9).
Similarly, estimator ﬁLg(y), where the true [ is used in (3.1.6), is also a weighted mean

of indicator functions, namely,

ST < g+ Y S el (1Y — w8 < A - @),

j€hy (EATy JEA,,

Frs(y) = N7

Rearranging terms, we can write FVLﬁ(y) as

Frali) = N7 [10G <+ Y wil (1Y = 28] < by — i8]

JEAN i€Ug;— Ay,
Y [ <+ )
JEAN

where

Z]‘ = Z Wz’j[<h]‘_1[yj — ;8] < hi 'y — :1;2[3])

iEUgJ—AgJ

= > wl(U; < w)
iEUz]—Az]
= Z wii I(Y; < §is)

iEUgJ—AgJ
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is defined in A.6¢ in Theorem 3.2.4, U; = h;l[Yj —z; 3], u; = h7 My — x;3], and /; is the

bin that contains unit j.

The analytical variance of FVLﬁ(y) — F(y) can be computed and estimated by using
an estimator similar to the one decribed in Theorem 3.3.2. In this section we will focus

on the construction of alternative estimators.
The local-residuals estimator is based on the model

where the U; are independent and identically distributed random variables with mean
zero and distribution function G(u). Under model (3.3.5) the Z] are conditionally in-
dependent given Ay. In addition to being independent, for each bin /, the k random

variables Z] with 7 € A, are identically distributed.

Let I; = [(YJ < y) Then, I; are independent, but not identically distributed, even
when the units are in the same bin. The expectation and variance of [(YJ < y) are
G(hj_l[y' — :1;][3]> and G(hj_l[y' — :1;][3]> [1 — G(hj_l[y' — x]ﬁ]ﬂ, respectively. Under the

assumptions of Theorem 3.2.4, for j; and j3 in the same bin £, we have that

dim (B[, <) | Av] = B[1(Y, <9) [ Av]] =0, (3.3.6)
and,
Aim (VY <) [Av] = VY, <9) [Ax][=0. (3.3.7)

Results (3.3.6) and (3.3.7) suggest that we can approximate the model variance of FVLﬁ(y)

by the variance of the n independent variables

Ly =1(Y;<9) + 7, (3.3.8)
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for ye Ayand £ =1,..., By. Asymptotically the £; for all 7 in the same bin, have the
same model mean and model variance. Because the £; are independent,

V(Fus(i) | Av) = VINT Y £ [ Av)

JEAN

*ZNZMM

(=1 jehy

= N~ Zv ZL‘]\AN

JEA,
N
=N kyoy, (3.3.9)

where o} = ky E L; ‘AN>. Note that V(/:j ‘ AN> for 5 € A, are not equal to

]EA
o7, but the quantities {V L; ‘ AN> — o7} converge to zero as N — oo. We propose two

estimators of V(ﬁLﬁ(y') ‘ AN>:

(1) an estimator based on the sample variance of the £;,

(2) a Jackknife estimator constructed by iteratively deleting one unit from the sample
at a time and recomputing the local-residuals estimator with the n — 1 remaining

units.

The estimator based on the sample variance of the £; is,

=N~ Z )Y (L = L), (3.3.10)

JEA,

where £, = k713" _, L;, and the sample variances 52 = (k —1)7* dien (L — L)? are

JEA
asymptotically unbiased for o7, for £ = 1,... , B. The Jackknife based estimator is
2
VJI& - n_l Z Z <FL5 FLﬁ( )) 5 (3311)
/=1 OZGA[

where szﬁ(_a)(y) is the local-residuals estimator computed from the reduced sample

Ay — {a}. The reduced sample Ay — {a} is the set of indices remaining when unit «
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is removed from bin /, in the original sample Ay. The estimator computed from the
reduced sample is
Fioi—o(@) = N—l{ IDIIED ,C;}, (3.3.12)
{#la JEM JEAT,
where A} = A, — {a},

Co=10; <+ Y wil (7Y, — 28 < hi'[i — 2i3])

i€Up,— A}

-1
and, w}; = 7; {EJ"GA?Q 7Tj_,1} are the adjusted weights when unit « is deleted.

In practice, we have to estimate 3 to compute each Fvgﬁ(_a)(yf). We computed two
versions of the Jackknife estimator: (1) one version that uses the B\ and the y;; computed

from the sample Ay, and (2) another version that recomputes B\ and y;; for each of the

n reduced samples Ay — {a}.
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3.4 Estimation of the Superpopulation Distribution Function

The finite population distribution function has N jumps of magnitude N~! at the
points y; for © € Uy, provided that the y; are different. Once the sample is selected and
the y; are observed for 7 € Ay, we know where n of the N jumps are located, provided
that the y; are different. From a superpopulation perspective, the y; for 7 € Ay are
a particular realization of the random variables Y;. Recall that the superpopulation
distribution function is defined in (2.1.5) as

Fi) = PY <) = N PO < | x=x)
€U

= N7 E{I(Y; <) | x=x}.

€U
We define an estimator of the superpopulation distribution function as

Fli() = NN G (b7 [y — 2:8)). (3.4.1)

€U

where @Lgi and B\ are defined in (3.1.6) and (3.1.5), respectively. The full-imputation

local-residuals estimator of (3.4.1) can be written as

T G (07— 2B + Y G (b — ).

JEA 1€AC

Fligy

(3.4.2)
The difference between the local-residuals estimator (3.1.4),
(@) = NS 005 <)+ D G (7' — i),
JEA 1EAC
and the estimator (3.4.2) is that the distribution function of the residuals is also esti-

mated for the sample units in (3.4.1), while in estimator (3.1.4) the quantities 1(Y; < )

are taken for the units in the sample.

We will consider the distribution of estimator (3.4.1) under the superpopulation

model used in Theorem 3.2.4 for # known and for 3 estimated from the data.
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3.4.1 Case E: Y, ~ Gy(y;z;), § known

We proved in Theorem 3.2.4 that the local-residuals estimator (3.1.4) is robust
against misspecifications of the mean and variance functions in the superpopulation
model. We will study the properties of the full-imputation local-residuals estimator
ﬁgl(y) as an estimator of the superpopulation distribution function. In Theorem 3.4.1

we will show model consistency and limiting normality of estimator (3.4.1).

Theorem 3.4.1 Let {An} be a sequence of samples selected from the sequence of finite
populations {Un}. Assume that the sample Ay is divided into By groups, each of
size ky, as described in (3.1.3). Assume a superpopulation model where the Y; are

independent and
P(Y; <y ‘ z;) = Gy (y; ;) (3.4.3)

for i € Un. Let h; = h(x;), where h(-) is the function used in constructing estimator
(3.4.1). Assume that there exists an my, such that 0 < mj, < h(xz;) < oo fori € Un. Let
y be a fized point. Assume A.la through A.4a from Theorem 3.2.2, A.7c through A.9¢c
from Theorem 3.2.4, and

A.6e For any N, {N‘l D ichy VI(Z; ‘ AN)} is positive, where

V(Zi | An) = > wigwi [Gy (minfij, i, 25) — Gy (s 25) Gy (55 25)]

11,02€U,
Z; = Zwijlo/j < §ij).J € Aw,
Ui; =y + hij(hi' — h;l)y' + hj(hjlxj — hitz)s,

U is the bin that contains unit j and Uy is the set of indices in bin (.

Let Fvgé(y) be the estimator (3.4.1) with the true 3 used in (3.1.6). Then,
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(a) The estimator ﬁg;(y) satisfies
i : _
Nh_r}r;OP‘F F(y)‘>c‘AN>—O

for all ¢ > 0.
(b) If the o in A.2a is greater than 0.5, then the sequence

(v a0} R - ro)) (3.4.4)

converges in distribution to a N(O 1) random variable, where

FfZ ) ‘AN :N ZZ Z Wiy jWipj X

=1 ]EA@ 21 ZQGU[

x [Gy (minfgi,, §i,i]: 25) — Gy (G55 25) Gy (Fingi 7)) -

(3.4.5)
Proof. Part (a). Estimator (3.4.1) can be written as
Fii(g)=N"" DY wyl Vi — 28] < hi'ly — a:])
1€UN JEA,
=N Y wi I (Y < g+ by) (3.4.6)
1€UN JEA,

by (3.2.48), where 5” = h;(hi! — hj_l)y' +hi(hite; — h;lxj)ﬁ is defined in (3.2.50). The

superpopulation distribution function can be written as

F(y) =Py =Ny P(Yi<y [ x=x)

€Upn
— N_l Z GY Y;
€U N
N
=N Z Z GY Y,
(=1 €Uy,

=N XD wiG(gi)

(=1 1€U,j€A,

N_l Z Z Z wiij(y'; l’i), (347)

(=1 jeh, €Uy,
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because the 3 .., wij = 1. Combining (3.4.6) and (3.4.7), the estimation error can be
expressed as

Ffi() = F(3) = N” ZZ w105 < i 8) = Gy ().

/=1 €Uy

(3.4.8)

The model expectation of (3.4.8) is

BFE0) ~ FG) | ] = B[N S S {1 <9+ 8) = Gy (o)} | 4]

(=1 jeh, €Uy,
By
=Ny DD e {GY@ +dij32;) — Gy (4 :L')}
{=1 j€h, €Uy,
In Theorem 3.2.4 we proved that under assumptions A.7c, A.8c and A.9c,

max max {Gy(y' + 5ij; l’j) - GY@Q xz)} = O(B];l)

{=1,...,Bn €U, j€U,

as shown in (3.2.57). Then, we have that

‘E{Ffl‘ ‘ANH—‘N ZZZWZ]{GY y—l—(gw,x]) Gy (y; )”

=1 jeh, €U,

By
SN Z%;‘GY@ +bij32;) — Gy (i 2:)

(=1 j€h, €Uy,

By
— Nt (Bt
_= wl]

(=1 jeh, €U,

= O(By"). (3.4.9)

Model unbiasedness of estimator (3.4.1) follows, since by A.2a we have that By — oo
as N — oo. Result (3.4.9) shows that model unbiasedness of (3.4.1) holds even when

both the mean and variance function of Y given x are misspecified.
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The model variance of ﬁgé(y) is

VIFLG) | Aw) = VIV S S0 Sl (6 <+ ) | Ax)

(=1 jeh, €U,

By
:N‘QZZ\/(ZM;[(Y]‘ <y+5ij> ‘AN>7
¢

=1 j€A, €U, (3 A 10)

because the Y; are independent under model (3.4.3). Using the Z; defined in A.6e we

can write (3.4.10) as

V(FIiG) | Av) = N7 EN: 3 v(Zj | AN>

(=1 j€h,
N Y v(Zj \AN>, (3.4.11)
JEAN
where

V<Zj ‘AN> = V< Z wz’j[<Yj <y+5ij>

€Uy,

= V(X (v <)

€Uy,

by (3.2.49), where /; is the index of the bin that contains unit j. Then,

V(2| ax) = V(X el (Y; <)

iEU@J
= Z wiljwiﬂcov [[<}/J < gilj)? [<}/J < ym])]
i1,i2€Uy;
= ) wiwn; [Gy (minffi g, Gl ) — Gy (3,53 25) Gy (g5 )]
i1,72€Uy,

(3.4.12)
Then, combining (3.4.10) and (3.4.12), we have that
V(FL@) [Av) = N2 3T 3 i ¢
=1 jeAy i1,i2€U,
< [Gy (minlfis . Gl ;) = Gy (§ig3 25) Gy (55 25) ]
(3.4.13)
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The covariances that appear in (3.4.13) are bounded, in absolute value, by 1/4. Then,

. By
V(ELG) [ax) = N2 3030 3w x

=1 jEA i1,i2€U,

x [Gy (minl§ij, §o]i 25) — Gy (i g3 ) Gy (i3 %)]‘

By
SNTEY DY wijwn %

=1 jEA; i1,i2€U,

X MGY(miH[Qm,Qm]; ;) — Gy (i3 75) Gy (i %)]‘

By
< N_2 Z Z Z wiljwm 4_1

=1 jEA; i1,i2€U,

S Y (Y w)?

/=1 jeh, €U,
By

Sty o
(=1 jEA,

= N'O(1) = O(N)

(3.4.14)

because <ZiEUZ wi]) is O(1) as shown in (3.2.16). Thus, we have that ﬁg;(y) is asymp-

totically model unbiased, by (3.4.9), and that the model variance of ﬁg;(y) goes to

zero as N — oo, by (3.4.14). Then, Fvg;(y) is model consistent for the superpopulation

distribution function.

Part (b). We proved in (3.4.13) that the model variance of ﬁg;(y) is given by (3.4.5).

We must show that (3.4.4) converges in distribution to a standard normal. The estimator

ﬁg;(y) is a weighted sum of indicator functions, as expressed in (3.4.6). All the moments

of the indicator functions exist, then, A.6e is sufficient for the Lyapounov condition for

the sum N1 7z

JEAN 7

(i a0} Fyw) - ro)} =

— {v(N—l >z \AN)}_I/Z{N—1 Z

JEAN

converges in distribution to a standard normal as N — oo.

. Then, since « is assumed to be greater than 0.5,
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3.4.2 Case F: Y, ~ Gy(y;2;); 0 estimated

In Section 3.2.4 we proved that the results for estimator FVLﬁ(y) given in Theo-
rem 3.2.4 hold when (3 is estimated from the data. We will prove in Theorem 3.4.2
that the results for estimator Fvgé(y) given in Theorem 3.4.1 also hold when [ is es-
timated. Theorem 3.4.2 essentially reproduces Theorem 3.2.5 for the full-imputation

local-residuals estimator.

Theorem 3.4.2 Let {An} be a sequence of samples selected from the sequence of finite
populations {Un}. Assume that the sample Ay is divided into By groups, each of
size ky, as described in (3.1.3). Assume a superpopulation model where the Y; are

independent and
P(Y; <y ‘ z;) = Gy (y; ;) (3.4.15)

for v € Uy. The set {x1,...,xn} is assumed fired and known. Let h; = h(x;), where
h(-) is the function used in constructing estimator (3.4.1). Assume that there exists an
myp, such that 0 < my < h(x;) < oo for i € Un. Let y be a fired point. Assume A.la
through A.4a from Theorem 3.2.2, A.5c through A.7c from Theorem 3.2.4, and A.8d
through A.10d from Theorem 3.2.5.

Let F\gl(y) be the estimator (3.4.1) and let ﬁg;(y) be the estimator (3.4.1) with the
true 3 used in (3.1.6). Then,

(a) The sequence
N E @) - FL))
converges to zero in probability.

(b) If the o in A.2a is greater than 0.5, then the sequence

(i | a0} B - ro)
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converges in distribution to a N(0,1) random variable, where V(ﬁgé(y) ‘ AN> is

given in Theorem 3.4.1.

Proof. Part (a). The estimation error {F\gl(y) — F(y)} can be decomposed into two

parts,

(Pl - ran}y = {F0 @) - Fly b+ {Fl@) - ra
(3.4.16)

For N1/? [F\gl(y) — ﬁgg(y)] to converge to zero in probability, we need to show that

for any A > 0 and ¢ > 0, there exists V). such that N > N,. implies that
P(N'Y2|F{'(§) — F{i(9)] > X | Ax) <. (3.4.17)

Let Dy = {N1/2|ﬁgi(y') — Fvgg(yﬂ > )\}. By assumption A.10d, for any ¢ > 0 we

can find n = O(N_l/z) and N, such that for N > N,.,
P(|B—8l=n) <e/2.
Then for all N > N,

P(Dy |Ax) = P(IB—8=n)P(Dy | A, |13~ 8]=n) +

P(|3 =8| <n)P(Dy | Av,|B =B8] <)

< €¢/2+
P(|B—6| <n)P(Dy ‘AN7|B—5| <)
< ¢/2+ P(Dy | An, 18— 8] <n). (3.4.18)

We extend the notation for 5” defined in (3.2.50) to

dijiey = hyj(h7

PG+ hy(h ey — b a)b, (3.4.19)
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to make explicit whether 5” is computed using 3 or 23\ Let
Ay = 1(Y; < §+055) = 1(Y; i+ b))
By (3.4.6), we have that

N7 Y il (V) St dy5) -

€Uy JEA,

—NTY Y wl (Y <+ 5217‘(5))‘
€Uy jEA,
< N-1/2 Z Z wij

i€UN jEA,

:N_1/2 Z Zw”

1€UN JEA,,

N2 B G) - FE )| = N2

I(Y; <g+d,5) — 10 <i+ 5@'(5))‘

. (3.4.20)

We will prove that (3.4.20) converges to zero in L; conditional on Ay and |Z3\ — Bl <n,

that is,

E{N‘l/2 Z Z wii| Al ‘AN7|B—5| <nl —0 (3.4.21)

1€UN JEA,,

as N — oo. Note that, conditional on Ay and |Z§— Bl <n,

|A;;| can only take the values 0 or 1,

|A;;| =1 only when
940,55 < Y5 <9+ b o
i+ < Vi i+ by,

. 5ij(b) is a monotone function of b,

° 5ij(§) is then restricted to be between

my = min <5ij(ﬁ+77)7 5ij(ﬁ—77)> and ]\477 = Imax <5ij(ﬁ+n)7 5ij(ﬁ—77)>7
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e by (3.2.50), the distance between m,, and M, is

M,y — 1m0y = [85j(61n) — Sij(5—n)]
=[(B+n)—(8—n)| x |hj(h; w; —h7'z;)|

= 2n|h;(hi ey — hita)|. (3.4.22)

The expected value of (3.4.20) given |Z§— Bl < nand Ay is

E[N‘l/2 Z Z wii| A ‘AN7|B—5| <] =

1€UN JEA,,

— N71/2 Z Z wi; B (|1 ‘ |B—5| <)

i€UN jEA,

- N~1/2 Z Z wijP<|Aij| =1 ‘ |Z§_ﬁ| < 77)?
1€UN jEA,
; (3.4.23)

with

P(§+ 80 < Yi <+ M,)
= Gy(y+ Myz;) — Gy (y+myz;).  (3.4.24)
An upper bound for (3.4.24) is
Gy (§ + My a;) — Gy (5 + mys ;) < (M, — my,) My, by A.7d
= 2lhj(h; e — hite) | My, by (3.4.22)

< 2n(max be) My M. (3.4.25)

The order of (3.4.25) depends on the order of n and max, by, since for a fixed y both

My, and Mgg are constants. By A.10d, n = O(N~'/2) and, by A.9d, max, b, = O(Bxy").
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Substituting (3.4.25) into (3.4.23) we have that

E[N_l/2 Z Z wij | Ayl \AN,IB—M < 77] =

€U jEA,,

= N2 W PlIAG =1 | Ax, 15 - 8l <]

€Uy JEA,

= N7V D D wn(maxb) Mis M,

€Uy JEA,

=N N W, 0N O(BR

€Uy JEA,

=O(NT'By) Y > wy

€Uy JEA,

= O(ByY), (3.4.26)

since D .o, wij = 1. By A2a, By = O(N®) — oo as N — oo, which implies that
(3.4.20) converges to zero in L;. Then, conditional on Ay and |Z§— Bl < n, (3.4.20)
converges to zero in probability, and we can find N7, such that for any N > N7,

PINTY2ST ST wyl Ayl > A | Aw, 15— 8] < n) < ¢/2. (3.4.27)
€U jEA,,
By (3.4.20), N'/? Aij

. Then, the occur-

FLG) = FLAG)| < N2 S, Sien, i

rence of the event Dy = {Nl/2

{N_1/2 ZiEUN EJEAzi Wij
Bl - Flyw)| > c (v 3 3w

€Uy JEA,

F\gl(y) — ﬁgg(y)‘ > )\} implies the occurrence of

> )\}. That is,

Dy = {NW Ais

>)\},

and

> A \AN,|B—6|<77) <e/2
(3.4.28)

P(Dy | An. 5= Bl <n) <P(NT2Y" 3wy

1€UN JEA,,

for N > N3 by (3.4.27).
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For N > max(N,., N5.) then, we have that both (3.4.18) and (3.4.28) hold. Then for
any N > max(N,., N3,)

Hence,

N—1/2

i) = FL@)] 0
in probability.
Part (b). We can write each of the terms of the sequence
iy —1/2 Dfis - .
{V<FLﬁ(y) ‘AN>} {FL (y)_F(y)}
as
1/2 _
{v#L |av)} {F @ -Fa)} =
= {V(FiG) | av)} I/Q{Ffl ) - @)} +
+ {V (FL) | Av) } { ‘ F(y')}. (3.4.29)

In part (a) we showed that Nl/z{ﬁﬂ( ) — ﬁfl(y)} converges to zero in probability as
N — oo. By (3.4.14) we have that V( ‘ AN> is O(N™'). Then the first term on
the right hand side of (3.4.29),

=Fi - —1/2 ( ~ 1. = f .
(Vi) o)} {70 - Fyto)
converges to zero in probability. By Slutsky’s theorem, we have that
iy —1/2 Dfis - .
{V<FLﬁ(y) ‘AN>} {FL (y)_F(y)}
and
I —1/2( ~ 1. .
(ELG) | an)} L FEG) - FG) )

have the same asymptotic distribution given by part (b) of Theorem 3.4.1. A
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4 MONTE CARLO RESULTS

A Monte Carlo simulation was conducted to study the performance of the local-
residuals estimator and the performance of the variance estimators introduced in Section
3.3. The superpopulation models used for generating the data and the model used
in the construction of the local-residuals estimator are presented in Section 4.1. The
results from the Monte Carlo simulation and a description of the methodology used in
the reported Monte Carlo estimates is presented in Section 4.2. Comments about the

performance of the local-residuals estimator are included in Section 4.3.

4.1 Superpopulation models

Three superpopulation models are considered. This set of models is by no means
intended to be an exhaustive list of real situations, but represents different types of

situations that we may encounter. The models are:

Model 1: “Correct” model. Data are generated using the model specified in the con-
struction of the Chambers and Dunstan estimator with the distribution of the
N:

x-values skewed. For ¢ =1,...,

o z; is generated from a Chi-square distribution with 3 degrees of freedom,

e u; is generated from a standard normal distribution,
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e the value for y; is computed as y; = max(0.01, 2 + @; + u;). In most finite

populations selected, all of the y values are strictly larger than 0.01.

Model 2: “Heteroscedastic” model. Data are generated using the model with increasing

variance introduced by Hansen, Madow and Tepping (1983). Fori=1,... , N:

o z; is generated from a Gamma distribution with density
flz) = .04z exp(—z/5),
e y; given x; is generated from a Gamma distribution with density

fly | 2) = [6T(c)] 'y  exp(—y/b),
where b = 1.25:1;3/2(8 +52)7 ! and ¢ = .04:1;_3/2(8 + Ha)?.
e Model 2 can be written as

Y; = A+ .25z + .252°*U,

where the U; are independent identically distributed random variables with

expected value zero and variance equal to one.

Model 3: Model with quadratic mean. Data are generated using a quadratic relation
between y and x. For:=1,... ,N:
e 1, is generated from a Uniform(0,10) distribution,
e u; is generated from a Uniform(-0.5, 0.5) distribution,

e y; is set equal to y; =5+ 0.2(z; — 5)* + ;.

The selected and nonselected points for a simple random sample of size 60 from a

finite population of size 600 for Models 1, 2 and 3 are presented in Figures 4.1, 4.2
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and 4.3 respectively. The fitted regression line for Model 1, from which residuals are

computed, is also included in the figures.

The average R* for samples of size 60 from Models 1, 2 and 3 are 0.861, 0.226 and

) o o -1 _
0.025 respectively, where R? = {EjeA(yj - y)Z}{ ZjeA(yj - y)Q} ,y=n"" Z]‘GA Yj,

and g; is computed using the ordinary least squares estimators for g and 3y as y; =

B\O+B\1$j-

4.2 Methodology

4.2.1 Sample sizes

Two finite population sizes, N = 600 and N = 1200, are considered in the Monte
Carlo study. A single set of auxiliary variables x4, ... ,zy was generated for each model
and used in all Monte Carlo iterations. In each Monte Carlo iteration a new set of
Y1,-.. ,yn 1s generated and a simple random sample without replacement of n units is
selected. The sample sizes considered are n = 60 for the population of N = 600 and

n = 120 for the population of size N = 1200.

4.2.2 Selection of the number of bins

In this section we will consider the problem of selecting the number of bins, B, used
to construct the local-residuals estimator. Intuitively, if we believe that the model with
a single conditional density adequately represents the data, we would select one bin.

Conversely, if we want to be conservative against model misspecification, a larger value

of By should be selected.



103

X

Figure 4.1 Plot of y against = and estimated regression line for a sample
of size 60 from a population of size 600 generated by Model 1.
Sample=e, nonsample=o
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Figure 4.2 Plot of y against = and estimated regression line for a sample
of size 60 from a population of size 600 generated by Model 2.
Sample=e, nonsample=o
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1

Figure 4.3 Plot of y against = and estimated regression line for a sample
of size 60 from a population of size 600 generated by Model 3.
Sample=e, nonsample=o
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Let 23\ be the least squares estimator of 3 defined in (3.1.5), and let

o~

uj =y; — 3, (4.2.1)
be the observed residuals for j € Ay. Under the Chambers and Dunstan model,
Uy=Y;, —a;8 (4.2.2)

are independent and identically distributed random variables. The local-residuals esti-
mator is constructed under the assumption that if z; is “close” to z;, then the distribution
of U; is “close” to that of U;. In both cases, the observed residuals (4.2.1) are used to

approximate the distribution function of U;.

We use crossvalidation to determine the number of bins to use in constructing the
local-residuals estimator. Crossvalidation for a sample of size k uses the k possible
samples of size & — 1 to predict the omitted element. Let unit « from bin ¢, be the

omitted element. For unit a, let
Crafag(@) = > wi_ (1@ < 1) (4.2.3)
JEA

be the local estimator of the distribution function of the residuals evaluated at w, where

A} = A, — ais the reduced sample in bin /, after removing unit o, and the weights

are the adjusted sampling weights for the remaining units

W] =75 {Ej’eA}a T
in bin A, . We construct a measure of how good @a[_a](u) is as a predictor of P(U, < )
in order to choose an “optimal” number of bins. To do this, we select 20 values of % and
evaluate both @a[_a](u) and I(u, < 1) at these 20 values. Let ;) for j, = 1,... ,n be
the sorted values of u; for j € Ay. Let w, = U|yn/21) for v = 1,...,20, be the selected

values of u, where the function |z] is the largest integer that is less than or equal to x.

Divisions of the sample into B = 1,2,..., B, bins are constructed, as described in

(3.1.3), where B, is the maximum number of bins considered. The value of B. was
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initially set at 20. For Model 3, the value of B. was changed to B. = 30 for samples of
size n = 60 and to B. = 35 for samples of size n = 120. Then, for each B, we compute

=2 Z( ~ Guupeafi)) (Gla)[1 = Gla)])

aChAy v=1

(4.2.4)

where @(uw) = {Z]‘GAN W;l}_l D ichy 77 I(t; < ty). The criterion is an approxima-
tion to the mean integrated square error defined in (2.4.5). Let B, be the value of
B that minimizes C'(B). The number B = B,,;, of bins is used to construct the local-
residuals estimator. In some cases the value of n/B is not an integer. The n sample
units are assigned to bins as follows. Let x(;) for j, = 1,... ,n be the sorted values of
xj for j € Ay. For 5, = 1,... ,n, unit j, is assigned to bin { =1 + [(j, — 1)(B/n)],

where the function |z ] is the largest integer that is less than or equal to x.

4.2.3 Calculation of Monte Carlo means and variances

The reported estimates are means, and functions of means, from M Monte Carlo
iterations. Let a(;) and b(;) be two quantities computed in Monte Carlo iteration ¢ for

t=1,..., M. The four types of estimates are:

a. the mean of agy, a¢y = M~ 2?11 a

b. the square root of a mean, (a(.))l/z,
c. the ratio between two means r = a(y(by) ™",
d. the square root of a ratio r'/2,

The formulas used to approximate the variances of the estimators of items a. through

d. are presented in Table 4.1.
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Table 4.1 Formulas for the Monte Carlo estimators and Monte Carlo vari-
ances for the quantities presented in Tables 4.5 through 4.32

Item reported Estimator Estimated variance of estimator
1M —a M

a. Mean aqy=M3 " awy M7y (aw — agy)?

b. Square root of mean (a(.))1/2 47 ay) M2 E£1(a(t) — agy)?

c. Ratio of means r=agy(bey)™! (by) 2 M2 Ei\il(a(t) — rby))?

d. Square root of ratio  r!/? 477 (b)) TP M Ei\il(a(t) — rby))?

4.3 Monte Carlo results

The estimators presented in Tables 4.5 through 4.32 are: local-residuals estimator
(3.1.4), Chambers and Dunstan estimator (2.3.4), Rao, Kovar and Mantel estimator
(2.3.13), a poststratified estimator defined below in (4.3.1), and the Horvitz-Thompson

estimator (2.2.1).

For each Monte Carlo iteration, the finite population distribution function and the es-
timators mentioned above were calculated at seven points y that represent the 5th, 10th,
25th, 50th, 75th, 90th and 95th percentiles of the superpopulation distribution function
F(y) defined in (2.1.5). The superpopulation quantiles were estimated by generating
5000 finite populations from the corresponding models and computing the correspond-

ing sample quantiles from the resulting N x 5000 values of y.

Two local-residuals estimators are considered, one based on the B,,;, bins selected
by the crossvalidation procedure that minimizes (4.2.4), identified as Local-residuals
(c-val) in Tables 4.5 through 4.20, and another based on a fixed number of bins. Let

ﬁ]{”m(y) denote the local-residuals estimator computed with B,,;, bins and ﬁL(y) denote
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the local-residuals estimator computed with a fixed number of bins. For the population
of size 600 we considered B = 6 bins, and for the population of size 1200 we considered
B =10 bins. The number of elements per bin, ky, is equal to: kego = 10 and ky290 = 12.
According to the assumption of a > 0.5 for the value of o in A.2a, we increased the
number of bins more than the number of elements per bin when considering the larger

population with N = 1200.

The poststratified estimator that appears in Tables 4.5 through 4.32 is constructed as
the average of two poststratified estimators: Eﬁ](y) and Eg](y) The first poststratified
estimator, ﬁﬁ](y), is constructed as follows: divide the population of size N in By
poststrata of equal size, Nf[Ll] = NBy' for h = 1,..., By. The number of poststrata is
the same as the number of bins used for the local-residuals estimator computed with a
fixed number of bins. For the population of size 600, Bgyo = 6 and for the population
of size 1200, Byogo = 10. The sample is assigned to the strata and the stratum sample
sizes, ny,, are computed for h = 1,..., By. Then, ﬁﬁ](y) is defined as

=N ZN I(y; < ),

JEAL

where A, is the part of the sample that falls into stratum h. To compute the second
poststratified estimator, FZES( ), the population is divided into By + 1 poststrata. The
stratum sizes, Nh , for the first and last strata are equal to 27' N By', and the N for

the remaining strata are equal to Nf[L] = NBy' for h=2,..., By. Then,

By+1
F(g) = N7 ZN ny Y Iy < 9).

JEAL

The poststratified estimator included in the tables is
Foo(y) = 27 [FR2(5) + FI2(3)]. (4.3.1)

For either Fps (y) or FZES]( ), strata are collapsed when one or more of the n, are zero. If

the first or the last stratum is empty, the empty stratum is collapsed with the contiguous
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stratum. If one of the middle strata is empty, say stratum &, the corresponding N is
divided by 2 and 27! N}, units are added to strata h — 1 and h 4 1. If more than one
stratum is empty, then the N units are reclassified into 2 poststrata with 27! /N units

each.

Table 4.2 presents the average number of bins selected by the crossvalidation pro-
cedure described in Section 4.2.2 for Model 1, Model 2 and Model 3, and for sample

sizes of 60 and 120. An estimate of the distribution of B,,;, for Model 1, Model

Table 4.2 Average number of bins selected by the crossvalidation procedure
for alternative models and sample sizes of 60 and 120. B. = 20 for
Model 1 and Model 2; B. = 30 for Model 3, n=60; B. = 35 for
Model 3, n=120; 10000 iterations for Model 1 and Model 2, 2500
iterations for Model 3

Sample size Model 1 Model 2 Model 3
n = 60 1.310 2.397 13.571
(0.011) (0.018) (0.084)

n =120 1.345 3.171 19.912
(0.011) (0.021) (0.104)

2 and Model 3 is presented in Tables 4.3 and 4.4 for the populations of size 600 and
1200 respectively. The columns corresponding to Model 1 show that almost 90% of the
time the procedure selects B,,;, = 1 for samples of size 60 and 120. Note that when
B,.in = 1, the local-residuals estimator and the Chambers and Dunstan estimator are
equal under simple random sampling. For Model 2, the crossvalidation procedure tends
to select values of B,,;, larger than the ones selected for Model 1. The values of B,,;,
are larger for the sample size of 120 than for the sample size of 60. For Model 3, it is
clear from Table 4.3 and 4.4 that the procedure selects larger values of B,,;, than for
other models. For Model 3, with B. = 35 and a sample size of 120, the average B,,;, is

19.91, with a standard error of 0.10.
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Tables 4.5 through 4.10 present the estimated bias in the estimated finite population
distribution function of the estimators considered. In the following discussion, we use
ﬁ(y) to denote any of the six estimators presented in the tables: F\]{m”(y) defined in
(3.1.4) with the number of bins selected by the procedure described in Section 4.2.2,
Fr(y) defined in (3.1.4), Fop(y) defined in (2.3.4), Fricazam () defined in (2.3.13), Fy(9)
defined in (4.3.1) and F\HT(y) defined in (2.2.1). Let ﬁ(t)(y') and Fi)(3) be the values
of the estimator ﬁ(y) and of the finite population distribution function at the point
y in iteration ¢t for t = 1,..., M. The estimated bias of an estimator is computed as
M=t 2?11 {ﬁ(t)(y') — FN(t)(y')}. Tables 4.5 and 4.8 present the bias for Model 1 for
n = 60 and n = 120 respectively. Tables 4.5 and 4.8 show that when the model is
correctly specified none of the estimators has noticeable bias for the parameter values
investigated. Although none of the biases represented in Tables 4.5 and 4.8 exceeds 0.2

percent points, more than 5% of the entries are significantly different from zero for a

test of level 5%. We discuss several explanations for the possible bias.

The local-residuals estimator for a fixed number of bins and the Chambers and
Dunstan estimator are model unbiased when computed with the true . In Tables 4.5 and
4.8 the local-residuals estimator and the Chambers and Dunstan estimator are computed
using 23\ defined in (3.1.5). The Rao, Kovar and Mantel estimator is asymptotically
unbiased, but for a sample of size 60 may be biased. Note that none of the entries in
Table 4.8 is significantly different from zero for the local-residuals estimators, for the
Chambers and Dunstan estimator and for the Rao, Kovar and Mantel estimator. The
bias in the poststratified estimator may be due to the collapsing algorithm described
above. We could have used the method of collapsing strata presented in Fuller (1966)

to obtain an unbiased estimator.

The Horvitz-Thompson estimator is conditionally biased given the sample indexes,

but unbiased when averaging over all possible simple random samples. Although in
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Table 4.5 there are two out of the seven entries for the Horvitz-Thompson estimator
that are significantly different from zero, none of the entries in the next five tables is
significant at a 5% level. Thus, out of 42 entries, we have approximately 5% that are

significantly different from zero.

Tables 4.6 and 4.9 give the bias of the estimators for Model 2, for sample sizes of 60
and 120, respectively. The Chambers and Dunstan estimator F\cp(y') is the most affected
by misspecification of the variance function, followed by the local-residuals estimator
computed with B,,;, bins. For a sample size of 60, the Chambers and Dunstan estimator
is overestimating the finite population distribution function by as much as 3.987 percent
points for the 5th superpopulation quantile. The bias in the Chambers and Dunstan
estimator does not decrease when the sample size increases to 120. For a sample of size
120 the finite population distribution function is overestimated by 3.941 percent points

for the Hth superpopulation quantile.

The bias for the local-residuals estimator computed with B,,;, bins does decrease
when the sample size increases, due to the fact that the number of bins selected by the
crossvalidation procedure are larger for samples of size 120 than for samples of size 60.
The bias in the local-residuals estimator with six bins is less than half a percent point
for the seven quantiles considered when the sample size is 60. When the sample size is
120, the biases of the local-residuals estimator computed with a fixed number of bins
for the quantiles investigated are less than 0.3%. The reduction in bias is proportional

to the increase in sample size as the bins lengths decrease with the sample size.

The three other estimators considered, F\RKMdm(yf), ﬁps(y') and F\HT(y), are robust to
heterogeneous variances. For both sample sizes, 60 and 120, the biases in the estimators
ﬁRKMdm(y'), ﬁps(y') and ﬁHT(y) are essentially zero. Thus, under misspecification of the

model variance function, the local-residuals estimator with fixed number of bins and the
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ﬁRKMdm(y') exhibit superior performance with respect to the bias criterion to that of
the Chambers and Dunstan estimator. Also, the biases in the local-residuals estimator
computed with B,,;, bins for Model 2, although somewhat larger, are still significantly

smaller than those of the Chambers and Dunstan estimator.

Tables 4.7 and 4.10 give the bias of the estimators under Model 3, that is, when
the mean function of the model has been misspecified. In this case, the poststrati-
fied estimator and the Horvitz-Thompson estimator have negligible bias. The biases of
the other four estimators are functions of the quantiles and the sample size, with the
local-residuals estimators with fixed B, in general, having smaller bias than the three
estimators ﬁ,{”m(y), F\cp(y') and F\RKMdm(yf). For lower quantiles the local-residuals es-
timator with fixed B has negligible bias, whereas the biases of the local-residuals with
B,.in bins estimator, Chambers and Dunstan estimator and Rao, Kovar and Mantel

estimator are significant. For upper quantiles, all estimators have comparable biases.

Tables 4.11 through 4.14 show the contribution of the bias to the mean square error:
{E [ﬁ(y)] — FN(y)}Z{E [F\(y) — FN(y)] 2}_1, for Models 2 and 3 for the local-residuals
estimators ﬁf””(y) and F\L(y), and for the Chambers and Dunstan estimator. For the
Chambers and Dunstan estimator and for the local-residuals estimator Af“”(y) the bias
makes an important contribution to the mean square error. The bias contribution to
the mean square error for the local-residuals estimator with fixed B is negligible when
either the mean or the variance have been misspecified. The bias in the local-residuals
estimator with B,,;, bins makes a significant contribution to the mean square error when
the variance function has been misspecified, but the contributions are much smaller in
magnitude than those of the Chambers and Dunstan estimator. For Model 2 and for
Model 3, the bias contribution to the mean square error for the Chambers and Dunstan

estimator does not decrease when the sample size increases.
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Tables 4.15 through 4.20 show the square root of the mean square error for the
Horvitz-Thompson estimator and the ratios of the root mean square errors of the other
estimators to the root mean square error of the Horvitz-Thompson estimator for Models
1, 2 and 3 and sample sizes of 60 and 120. When the model is correctly specified, Tables
4.15 and 4.18, the Chambers and Dunstan estimator has the smallest mean square errors
for the seven quantiles investigated for both sample sizes. The local-residuals estimator
with B,,;, bins is the second best with respect to the mean square error criterion, followed
by the local-residuals estimator with fixed B. The root mean square error of estimator
ﬁL(y) for the superpopulation median is about 60% of the root mean square error of the

Horvitz-Thompson estimator for samples of size 60 or 120.

For Model 2, Tables 4.16 and 4.19 indicate that the local-residuals estimator with
fixed B, in general, has smaller root mean square error than the other estimators. The
Chambers and Dunstan estimator is the estimator most affected by the variance mis-
specification of Model 2 for the sample size of 60. The local-residuals estimator with

B,in bins performs uniformly better than the Chambers and Dunstan estimator.

For Model 3 and for a sample size of 60, Table 4.17 shows that both local-residuals
estimators perform better than ﬁcp(y'), ﬁRKMdm(y') and F\HT(y), and the performance
of the local-residuals estimators is similar to the performance of F\ps(y'). For Model 3 and
for a sample size of 120, the performances of the estimators F\j{”m(y), F\L(y), F\RKMdm(y')
and ﬁps(y') are similar. The local-residuals estimator with fixed B has uniformly smaller
root mean square error than the other estimators for the seven superpopulation quantiles

considered.

We can summarize the results from Tables 4.5 through 4.10, referring to the bias of
the estimators, and the results from Tables 4.15 through 4.20, referring to the root mean

square error, as follows:
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— the local-residuals estimator with fixed B is robust in terms of bias against

departures from the superpopulation model used to construct the estimator,

— thelocal-residuals estimator with B,,;, bins is less sensitive to misspecification

than the Chambers and Dunstan estimator,

— the procedure that selects the number of bins seems to select too few bins for

Model 2, and too many bins for Model 3,

— the local-residuals estimator with fixed B has in general smaller mean square
error than the Rao, Kovar and Mantel estimator, the poststratified estimator

and the Horvitz-Thompson estimator,

— the performance of both local-residuals estimators is superior to the perfor-
mance of the Chambers and Dunstan estimator when the model is incorrectly

specified.

We study the estimation of the variance for the local-residuals estimator with a fixed
number of bins. The remaining tables, Table 4.21 through Table 4.32, are related to the
performance of the variance estimators studied in Section 3.3 for the model variance of
ﬁL(y) — Fn(y) and the model variance of F\L(y) as an estimator of the superpopulation
distribution function. The three estimators considered are \N/ee(y) defined in (3.3.2), \N/,g(y)
defined in (3.3.10), and \7JK(y') defined in (3.3.11). Estimator \N/ee(y) is an estimator of
the variance of the finite population estimation error of the local-residuals estimator,
ﬁL(y) — Fn(y). Estimators \N/,g(y) and \7JK(y') are used to estimate the variance of
the error of the local-residuals estimator ﬁL(y) as an estimator of the superpopulation
distribution function, F\L(y) — F(y), where F\L(y) is defined in (3.1.4) and F(y) is defined
in (2.1.5). When the variance estimators are computed using the estimated B, we use
the notation ‘Ze(y), \75(y), and VJK(y'), for the three estimators. The two versions of

the jackknife estimator (3.3.11) that we mentioned in Section (3.3) are:
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— \/Z]Kwo(y') for the version that uses the 23\ and the y;; computed from the sample

An,

— \/Z]K(y') for the version that recomputes B\ and y;; for each of the n reduced

samples Ay — {a}.

From Tables 4.21 through 4.26 one can see that for all combination of models and
sample sizes considered, the average of estimator \Ze(y) and the average of estimator
Vg(y) are, in general, very similar to the variance of F\L(y) — Fn(y) and to the variance
of ﬁL(y) — F(y), respectively. The mean of the estimator \7JK(y') is always greater than
the mean of the estimator \/Z]Kwo(y'), as may be expected from the fact that \/Z]K(y')
introduces additional variability due to the estimation of 3 and recalculation of the y;;.

Both Jackknife variances are greater, on average, than the variance computed using

Ve(y).

In Tables 4.27 through 4.32 we present results on the estimated probability that
a 95% confidence interval constructed with one of the four variance estimators will
contain the percentile of the finite population distribution function. Since the sampling
fraction is 0.10 in both populations, the variance of ﬁL(y) — Fn(y) is about 0.9 of
the variance of F\L(y) — F(y). The three estimators of the model variance of ﬁL(y) —
F(y) can be modified to obtain estimators of the model variance of ﬁL(y) — Fn(y) by
multiplying Vg(y), \/Z]Kwo(y') and \/Z]K(y') by (1 —nN™'). The standardized estimators
are likely to converge faster to the limiting normal variable in the middle part of the
distribution than in the tails of the distribution. Thus, in finite samples, the confidence
intervals for the finite population distribution function evaluated at quantiles towards
the tails of the distribution constructed using the limiting normal theory are likely to
have inferior coverage probabilities to those of the confidence intervals for the finite

population distribution function for quantiles near the middle part of the distribution.
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The coverage probabilities of the confidence intervals constructed with \Ze(y) and
with 0.9‘75(y') are very similar in the six tables that represent the three models and
two sample sizes for the seven quantiles considered. Since Vg(y) is much faster to
compute than ‘Ze(y), we can approximate \Ze(y) by (1—nN_1)\75(y') to reduce computing
time. Due to the larger variances obtained for the jackknife estimators, the confidence
intervals constructed with the jackknife estimators generally have coverage probabilities
larger than those of the confidence intervals constructed with \Ze(y) or (1— nN_l)VC(y').
For Model 1 and Model 2, the confidence intervals have probabilities close to 0.95 of
including the finite population distribution function, especially for the middle part of
the distribution. For Model 3, the confidence intervals for quantiles in the middle part of
the distribution constructed with the four variance estimators, ‘Ze(y), \75(y), \7JKwo(y')
and VJK(y'), tend to cover the percentiles of the finite population distribution function

more than 95% of the time.
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Table 4.3 Estimated distribution of the number of bins (B) selected by the
cross-validation procedure for Model 1, Model 2 and Model 3 for
a sample size of n = 60. B, = 20, 2500 iterations for Model 1 and
Model 2; B. = 30, 10000 iterations for Model 3. Standard errors
are smaller than 0.0047 for Model 1 and Model 2 and smaller than

0.0064 for Model 3

B Model 1 Model 2 Model 3

1 0.8783 0.3312 0.0000
2 0.0500 0.3331 0.0000
3 0.0286 0.1844 0.0000
4 0.0164 0.0626 0.0000
5 0.0106 0.0398 0.0028
6 0.0052 0.0137 0.0088
7 0.0042 0.0132 0.0260
8 0.0022 0.0074 0.0424
9 0.0018 0.0046 0.0724
10 0.0008 0.0031 0.0908
11 0.0008 0.0019 0.1144
12 0.0004 0.0015 0.1012
13 0.0002 0.0008 0.0904
14 0.0001 0.0010 0.0820
15 0.0001 0.0008 0.0892
16 0.0000 0.0005 0.0700
17 0.0001 0.0001 0.0536
18 0.0000 0.0002 0.0340
19 0.0002 0.0001 0.0320
20 0.0000 0.0000 0.0188
21 0.0000 0.0000 0.0148
22 0.0000 0.0000 0.0168
23 0.0000 0.0000 0.0144
24 0.0000 0.0000 0.0092
25 0.0000 0.0000 0.0052
26 0.0000 0.0000 0.0028
27 0.0000 0.0000 0.0024
28 0.0000 0.0000 0.0020
29 0.0000 0.0000 0.0016
30 0.0000 0.0000 0.0020
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Table 4.4 Estimated distribution of the number of bins (B) selected by the
cross-validation procedure for Model 1, Model 2 and Model 3 for a
sample size of n = 120. B, = 20, 2500 iterations for Model 1 and
Model 2; B. = 30, 10000 iterations for Model 3. Standard errors
are smaller than 0.0046 for Model 1 and Model 2, and smaller than

0.0057 for Model 3

B Model 1 Model 2 Model 3

1 0.8734 0.1398 0.0000
2 0.0457 0.3085 0.0000
3 0.0322 0.2547 0.0000
4 0.0176 0.1201 0.0000
5 0.0109 0.0830 0.0000
6 0.0071 0.0299 0.0000
7 0.0051 0.0252 0.0000
8 0.0031 0.0121 0.0000
9 0.0015 0.0077 0.0008
10 0.0011 0.0063 0.0052
11 0.0007 0.0039 0.0240
12 0.0003 0.0026 0.0212
13 0.0003 0.0017 0.0424
14 0.0004 0.0010 0.0504
15 0.0002 0.0011 0.0704
16 0.0000 0.0006 0.0700
17 0.0003 0.0007 0.0592
18 0.0000 0.0003 0.0904
19 0.0001 0.0003 0.0744
20 0.0000 0.0005 0.0836
21 0.0000 0.0000 0.0808
22 0.0000 0.0000 0.0536
23 0.0000 0.0000 0.0448
24 0.0000 0.0000 0.0384
25 0.0000 0.0000 0.0404
26 0.0000 0.0000 0.0304
27 0.0000 0.0000 0.0316
28 0.0000 0.0000 0.0156
29 0.0000 0.0000 0.0156
30 0.0000 0.0000 0.0140
31 0.0000 0.0000 0.0136
32 0.0000 0.0000 0.0092
33 0.0000 0.0000 0.0092
34 0.0000 0.0000 0.0056
35 0.0000 0.0000 0.0052




Table 4.5 Estimated bias of alternative estimators of distribution function x
100 for Model 1. Standard error in parentheses. N = 600, n = 60;
10,000 iterations

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals  Dunstan Mantel stratified Thompson
(c-val) (B =6)
5% 0.046 0.051 0.022 0.065 0.051 0.057
(0.017) (0.023) (0.016) (0.026) (0.027) (0.028)
10% 0.051 0.062 0.015 0.075 0.073 0.066
(0.024) (0.031) (0.022) (0.034) (0.035) (0.038)
25% 0.016 0.004 -0.009 0.016 -0.008 0.005
(0.031) (0.039) (0.029) (0.043) (0.044) (0.054)
50% 0.059 0.096 0.065 0.114 0.119 0.138
(0.027) (0.037) (0.025) (0.042) (0.043) (0.063)
5% 0.018 -0.024 0.048 -0.054 -0.059 -0.031
(0.016) (0.024) (0.014) (0.030) (0.032) (0.054)
90% 0.026 0.012 0.027 -0.008 0.016 -0.019
(0.009) (0.011) (0.009) (0.018) (0.022) (0.037)
95% -0.000 0.014 -0.006 0.009 0.020 -0.009
(0.008) (0.009) (0.007) (0.015) (0.022) (0.027)
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Table 4.6 Estimated bias of alternative estimators of distribution function x
100 for Model 2. Standard error in parentheses. N = 600, n = 60;
10,000 iterations

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals  Dunstan Mantel stratified Thompson
(c-val) (B =6)
5% 2.345 0.391 3.987 0.016 0.016 0.004
(0.030) (0.027) (0.029) (0.030) (0.029) (0.028)
10% 2.144 0.414 3.481 0.007 0.002 0.001
(0.037) (0.037) (0.034) (0.041) (0.040) (0.039)
25% -0.449 -0.451 -0.930 -0.093 -0.080 -0.107
(0.046) (0.053) (0.041) (0.057) (0.058) (0.057)
50% -2.658 -0.351 -6.129 -0.026 -0.031 -0.041
(0.059) (0.059) (0.052) (0.061) (0.062) (0.065)
5% -1.885 -0.267 -3.790 0.026 0.007 -0.004
(0.052) (0.050) (0.056) (0.052) (0.052) (0.056)
90% -0.580 -0.144 -0.141 0.013 0.012 0.008
(0.036) (0.035) (0.039) (0.036) (0.036) (0.039)
95% 0.055 -0.039 0.729 -0.018 -0.015 -0.011
(0.026) (0.026) (0.024) (0.027) (0.027) (0.028)
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Table 4.7 Estimated bias of alternative estimators of distribution function x
100 for Model 3. Standard error in parentheses. N = 600, n = 60;
2500 iterations for (c-val) and 10,000 iterations for all others

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals  Dunstan Mantel stratified Thompson
(c-val) (B =6)
5% 0.376 0.010 1.186 0.437 -0.022 -0.014
(0.056) (0.025) (0.029) (0.030) (0.026) (0.028)
10% 0.410 -0.019 0.902 0.525 -0.041 -0.025
(0.069) (0.033) (0.036) (0.040) (0.033) (0.038)
25% 0.238 -0.013 -0.047 0.662 -0.018 0.033
(0.073) (0.037) (0.048) (0.055) (0.036) (0.053)
50% 0.083 0.129 0.087 0.508 0.033 0.087
(0.055) (0.034) (0.059) (0.062) (0.030) (0.062)
5% -0.004 0.804 0.539 0.340 0.082 0.073
(0.052) (0.034) (0.052) (0.053) (0.028) (0.053)
90% 0.289 0.379 0.913 0.209 0.046 0.028
(0.059) (0.033) (0.034) (0.037) (0.030) (0.037)
95% 0.210 0.127 0.244 0.124 0.002 -0.007
(0.050) (0.026) (0.024) (0.027) (0.026) (0.028)
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Table 4.8 Estimated bias of alternative estimators of distribution function

x 100 for Model 1.

n = 120; 10,000 iterations

Standard error in parentheses. N = 1200,

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals ~ Dunstan Mantel stratified Thompson
(c-val) (B =10)
5% 0.005 0.008 -0.005 0.013 0.015 0.018
(0.012) (0.017) (0.011) (0.018) (0.019) (0.020)
10% 0.013 0.036 -0.012 0.034 0.043 0.047
(0.017) (0.022) (0.015) (0.023) (0.024) (0.027)
25% -0.005 0.036 -0.042 0.039 0.031 0.068
(0.021) (0.028) (0.020) (0.029) (0.030) (0.038)
50% -0.003 -0.029 -0.000 -0.024 -0.027 0.025
(0.018) (0.027) (0.016) (0.029) (0.030) (0.044)
5% 0.004 -0.004 0.031 0.011 0.012 0.043
(0.012) (0.019) (0.011) (0.022) (0.022) (0.038)
90% -0.001 -0.011 0.012 -0.015 -0.014 -0.020
(0.008) (0.011) (0.008) (0.015) (0.016) (0.027)
95% 0.005 0.027 0.010 0.017 0.023 0.017
(0.006) (0.008) (0.006) (0.012) (0.013) (0.019)
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Table 4.9 Estimated bias of alternative estimators of distribution function
x 100 for Model 2. Standard error in parentheses. N = 1200,
n = 120; 10,000 iterations

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals ~ Dunstan Mantel stratified Thompson
(c-val) (B =10)
5% 1.550 0.180 3.941 0.028 0.036 0.031
(0.023) (0.020) (0.020) (0.021) (0.021) (0.020)
10% 1.517 0.213 3.483 -0.003 0.012 0.002
(0.027) (0.027) (0.024) (0.029) (0.028) (0.028)
25% -0.593 -0.273 -1.177 0.015 0.044 0.024
(0.034) (0.038) (0.028) (0.040) (0.040) (0.039)
50% -1.744 -0.109 -6.677 -0.000 -0.007 0.014
(0.044) (0.042) (0.036) (0.042) (0.043) (0.045)
5% -1.022 -0.142 -3.531 -0.041 -0.049 -0.035
(0.036) (0.036) (0.042) (0.036) (0.037) (0.039)
90% -0.410 -0.085 0.344 -0.010 -0.020 -0.004
(0.025) (0.025) (0.026) (0.026) (0.026) (0.027)
95% -0.048 -0.023 0.930 0.003 0.000 0.009
(0.018) (0.018) (0.016) (0.019) (0.019) (0.020)

Vel



Table 4.10 Estimated bias of alternative estimators of distribution function
x 100 for Model 3. Standard error in parentheses. N = 1200,
n = 120; 2500 iterations for (c-val) and 10,000 iterations for all

others
Local- Local- Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals ~ Dunstan Mantel stratified Thompson
(c-val) (B =10)
5% 0.175 0.001 0.678 0.233 -0.018 0.001
(0.039) (0.018) (0.020) (0.021) (0.018) (0.020)
10% 0.221 -0.009 0.539 0.299 -0.006 -0.002
(0.049) (0.023) (0.025) (0.028) (0.024) (0.027)
25% 0.136 0.006 0.109 0.384 0.021 0.027
(0.052) (0.026) (0.035) (0.039) (0.026) (0.039)
50% 0.034 -0.031 -0.054 0.201 -0.022 -0.015
(0.038) (0.020) (0.042) (0.044) (0.019) (0.044)
5% -0.071 0.112 0.098 0.124 0.007 -0.022
(0.033) (0.019) (0.037) (0.038) (0.017) (0.038)
90% 0.141 0.328 0.250 0.074 0.004 -0.022
(0.033) (0.019) (0.025) (0.026) (0.015) (0.026)
95% 0.161 0.184 0.364 0.075 0.023 0.010
(0.031) (0.017) (0.017) (0.019) (0.015) (0.019)
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Table 4.11 Ratio of Bias square to Mean Square Error x 100 for Lo-
cal-residuals estimator and Chambers-Dunstan estimator for
Model 2. Standard error in parentheses. N = 600, n = 60;
10,000 iterations

F(y) Local-residuals Local-residuals Chambers-Dunstan
(c-val) (B =6)

5% 37.29 2.03 65.68
(0.60) (0.27) (0.40)

10% 25.51 1.22 51.47
(0.66) (0.21) (0.55)

25% 0.95 0.71 4.91
(0.19) (0.17) (0.42)

50% 16.85 0.35 58.50
(0.68) (0.12) (0.62)

5% 11.75 0.29 31.17
(0.58) (0.11) (0.73)

90% 2.48 0.17 0.13
(0.30) (0.08) (0.07)

95% 0.04 0.02 8.20
(0.04) (0.03) (0.57)

9¢1



Table 4.12 Ratio of Bias square to Mean Square Error x 100 for Lo-
cal-residuals estimator and Chambers-Dunstan estimator for
Model 3. Standard error in parentheses. N = 600, n = 60;
2500 iterations for (c-val) and 10,000 iterations for all others

F(y) Local-residuals Local-residuals Chambers-Dunstan
(c-val) (B =6)
5% 1.77 0.00 13.93
(0.51) (0.01) (0.55)
10% 1.40 0.00 6.00
(0.46) (0.01) (0.44)
25% 0.42 0.00 0.01
(0.26) (0.01) (0.02)
50% 0.09 0.14 0.02
(0.12) (0.08) (0.03)
5% 0.00 5.38 1.06
(0.01) (0.43) (0.20)
90% 0.96 1.33 6.79
(0.39) (0.23) (0.51)
95% 0.71 0.24 1.06
(0.34) (0.10) (0.21)
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Table 4.13 Ratio of Bias square to Mean Square Error x 100 for Lo-
cal-residuals estimator and Chambers-Dunstan estimator for
Model 2. Standard error in parentheses. N = 1200, n = 120;
10,000 iterations

F(y) Local-residuals Local-residuals Chambers-Dunstan
(c-val) (B =10)

5% 32.17 0.84 79.44
(0.61) (0.18) (0.26)

10% 23.79 0.62 68.40
(0.65) (0.15) (0.39)

25% 2.99 0.50 14.85
(0.34) (0.14) (0.65)

50% 13.37 0.07 77.76
(0.61) (0.05) (0.34)

5% 7.32 0.16 41.88
(0.49) (0.08) (0.68)

90% 2.71 0.12 1.68
(0.31) (0.07) (0.26)

95% 0.07 0.02 25.69
(0.05) (0.02) (0.79)
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Table 4.14 Ratio of Bias square to Mean Square Error x 100 for Lo-
cal-residuals estimator and Chambers-Dunstan estimator for
Model 3. Standard error in parentheses. N = 1200, n = 120;
2500 iterations for (c-val) and 10,000 iterations for all others

F(y) Local-residuals Local-residuals Chambers-Dunstan
(c-val) (B =10)

5% 0.81 0.00 10.46
(0.35) (0.00) (0.52)

10% 0.81 0.00 4.29
(0.36) (0.01) (0.39)

25% 0.28 0.00 0.09
(0.21) (0.00) (0.06)

50% 0.03 0.02 0.02
(0.07) (0.03) (0.03)

5% 0.19 0.35 0.07
(0.17) (0.12) (0.05)

90% 0.72 2.81 0.97
(0.33) (0.32) (0.20)

95% 1.08 1.21 4.31
(0.41) (0.22) (0.41)
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Table 4.15 Ratio of Root Mean Square Error (rMSE) of alternative estima-
tors to the rMSE of Horvitz-Thompson estimator, and rMSE of
Horvitz-Thompson estimator x 100, for Model 1. Standard error

in parentheses. N = 600, n = 60; 10,000 iterations

Ratios of tMSE for alternative estimators:

rMSE x100 of

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals ~ Dunstan Mantel stratified Thompson
(c-val) (B =6)
5% 0.617 0.831 0.558 0.929 0.970 2.804
(0.006) (0.005) (0.004) (0.004) (0.005) (0.028)
10% 0.630 0.809 0.583 0.889 0.919 3.812
(0.005) (0.005) (0.005) (0.005) (0.005) (0.038)
25% 0.570 0.715 0.541 0.781 0.808 5.444
(0.005) (0.005) (0.004) (0.005) (0.005) (0.054)
50% 0.432 0.584 0.395 0.661 0.678 6.291
(0.004) (0.005) (0.004) (0.005) (0.005) (0.063)
5% 0.299 0.442 0.269 0.566 0.592 5.383
(0.003) (0.004) (0.002) (0.005) (0.005) (0.054)
90% 0.240 0.284 0.233 0.491 0.601 3.713
(0.002) (0.003) (0.002) (0.004) (0.005) (0.037)
95% 0.278 0.320 0.272 0.565 0.803 2.718
(0.003) (0.003) (0.003) (0.005) (0.005) (0.027)
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Table 4.16 Ratio of Root Mean Square Error (rMSE) of alternative estima-
tors to the rMSE of Horvitz-Thompson estimator, and rMSE of
Horvitz-Thompson estimator x 100, for Model 2. Standard error

in parentheses. N = 600, n = 60; 10,000 iterations

Ratios of tMSE for alternative estimators:

rMSE x100 of

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals ~ Dunstan Mantel stratified Thompson
(c-val) (B =6)
5% 1.357 0.967 1.738 1.057 1.029 2.830
(0.011) (0.005) (0.014) (0.003) (0.004) (0.028)
10% 1.098 0.969 1.255 1.050 1.030 3.867
(0.008) (0.005) (0.010) (0.003) (0.003) (0.039)
25% 0.816 0.944 0.743 1.008 1.026 5.652
(0.004) (0.004) (0.005) (0.003) (0.003) (0.057)
50% 0.998 0.914 1.236 0.944 0.957 6.483
(0.006) (0.005) (0.009) (0.004) (0.004) (0.065)
5% 0.984 0.890 1.215 0.930 0.931 5.589
(0.006) (0.005) (0.009) (0.004) (0.004) (0.056)
90% 0.955 0.904 1.006 0.945 0.946 3.857
(0.006) (0.005) (0.007) (0.004) (0.005) (0.039)
95% 0.938 0.916 0.911 0.966 0.977 2.794
(0.006) (0.006) (0.006) (0.004) (0.005) (0.028)
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Table 4.17 Ratio of Root Mean Square Error (rMSE) of alternative estima-
tors to the rMSE of Horvitz-Thompson estimator, and rMSE of
Horvitz-Thompson estimator x 100, for Model 3. Standard error
in parentheses. N = 600, n = 60; 2500 iterations for (c-val) and

10,000 iterations for all others

Ratios of tMSE for alternative estimators:

rMSE x100 of

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals ~ Dunstan Mantel stratified Thompson
(c-val) (B =6)
5% 1.010 0.903 1.133 1.085 0.943 2.803
(0.016) (0.005) (0.010) (0.005) (0.005) (0.028)
10% 0.917 0.865 0.973 1.066 0.884 3.786
(0.014) (0.005) (0.006) (0.004) (0.005) (0.038)
25% 0.685 0.690 0.894 1.039 0.669 5.346
(0.012) (0.005) (0.003) (0.003) (0.005) (0.053)
50% 0.444 0.550 0.954 1.012 0.486 6.160
(0.008) (0.005) (0.003) (0.002) (0.004) (0.062)
5% 0.483 0.649 0.982 1.003 0.534 5.336
(0.010) (0.005) (0.003) (0.001) (0.004) (0.053)
90% 0.790 0.883 0.939 0.995 0.795 3.731
(0.012) (0.006) (0.004) (0.001) (0.005) (0.037)
95% 0.904 0.937 0.858 0.995 0.948 2.758
(0.014) (0.005) (0.004) (0.001) (0.005) (0.028)
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Table 4.18 Ratio of Root Mean Square Error (rMSE) of alternative estima-
tors to the rMSE of Horvitz-Thompson estimator, and rMSE of
Horvitz-Thompson estimator x 100, for Model 1. Standard error
in parentheses. N = 1200, n = 120; 10,000 iterations

Ratios of tMSE for alternative estimators:

rMSE x100 of

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals ~ Dunstan Mantel stratified Thompson
(c-val) (B =12)
5% 0.609 0.873 0.554 0.928 0.960 1.968
(0.007) (0.005) (0.004) (0.004) (0.005) (0.020)
10% 0.628 0.836 0.580 0.874 0.903 2.664
(0.007) (0.005) (0.005) (0.004) (0.005) (0.027)
25% 0.557 0.730 0.526 0.761 0.780 3.836
(0.006) (0.005) (0.004) (0.005) (0.005) (0.038)
50% 0.420 0.613 0.372 0.654 0.670 4.401
(0.005) (0.005) (0.003) (0.005) (0.005) (0.044)
5% 0.311 0.500 0.279 0.571 0.590 3.804
(0.003) (0.004) (0.003) (0.005) (0.005) (0.038)
90% 0.304 0.413 0.291 0.564 0.595 2.665
(0.003) (0.004) (0.003) (0.005) (0.005) (0.027)
95% 0.309 0.399 0.299 0.604 0.699 1.927
(0.003) (0.004) (0.003) (0.005) (0.005) (0.019)
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Table 4.19 Ratio of Root Mean Square Error (rMSE) of alternative estima-
tors to the rMSE of Horvitz-Thompson estimator, and rMSE of
Horvitz-Thompson estimator x 100, for Model 2. Standard error
in parentheses. N = 1200, n = 120; 10,000 iterations

Ratios of tMSE for alternative estimators:

rMSE x100 of

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals ~ Dunstan Mantel stratified Thompson
(c-val) (B =12)
5% 1.359 0.980 2.199 1.055 1.024 2.011
(0.015) (0.004) (0.017) (0.003) (0.003) (0.020)
10% 1.130 0.986 1.530 1.051 1.026 2.752
(0.011) (0.004) (0.012) (0.003) (0.003) (0.028)
25% 0.875 0.980 0.778 1.011 1.024 3.923
(0.009) (0.004) (0.006) (0.003) (0.003) (0.039)
50% 1.068 0.934 1.695 0.943 0.960 4.467
(0.010) (0.005) (0.013) (0.004) (0.004) (0.045)
5% 0.966 0.913 1.395 0.927 0.936 3.912
(0.010) (0.005) (0.010) (0.004) (0.004) (0.039)
90% 0.916 0.921 0.975 0.949 0.952 2.719
(0.009) (0.005) (0.006) (0.003) (0.004) (0.027)
95% 0.924 0.936 0.932 0.966 0.975 1.970
(0.009) (0.005) (0.006) (0.003) (0.005) (0.020)

24!



Table 4.20 Ratio of Root Mean Square Error (rMSE) of alternative estima-
tors to the rMSE of Horvitz-Thompson estimator, and rMSE of
Horvitz-Thompson estimator x 100, for Model 3. Standard error
in parentheses. N = 1200, n = 120; 2500 iterations for (c-val)

and 10,000 iterations for all others

Ratios of tMSE for alternative estimators:

rMSE x100 of

Local- Local-  Chambers- Rao-Kovar Post- Horvitz-
F(y) | residuals residuals ~ Dunstan Mantel stratified Thompson
(c-val) (B =12)
5% 0.979 0.913 1.060 1.052 0.932 1.977
(0.020) (0.005) (0.008) (0.003) (0.005) (0.020)
10% 0.906 0.866 0.963 1.042 0.871 2.700
(0.018) (0.005) (0.005) (0.003) (0.005) (0.027)
25% 0.671 0.678 0.919 1.026 0.672 3.850
(0.013) (0.005) (0.003) (0.002) (0.005) (0.039)
50% 0.436 0.463 0.965 1.007 0.430 4.396
(0.009) (0.004) (0.002) (0.001) (0.004) (0.044)
5% 0.429 0.492 0.973 1.000 0.433 3.826
(0.009) (0.004) (0.003) (0.001) (0.004) (0.038)
90% 0.632 0.743 0.962 0.997 0.586 2.640
(0.013) (0.006) (0.003) (0.001) (0.004) (0.026)
95% 0.811 0.878 0.918 0.993 0.812 1.908
(0.016) (0.006) (0.005) (0.001) (0.005) (0.019)

Gerl
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Table 4.21 Square root of Monte Carlo estimated variance x100 (*) and
square root of Monte Carlo average of variance estimators x 100
(**) for Model 1.

n = 60; 1000 iterations. Local-residuals estimator calculated with

fixed number of bins (B = 6)

Standard error in parentheses.

N = 600,

— 1 [ & ) )
F(y) | Fr(y) — Fn(y)  Veely) | Fo(o) — F(y)  Ve(®)  Vikw(y) Vix(y)
5% 2.252 2.244 2.332 2.326 2.431 2.445

(0.024)  (0.008) (0.024) (0.009)  (0.009) (0.009)
10% 2.975 2.965 3.094 3.079 3.218 3.235
(0.031)  (0.007) (0.032) (0.007)  (0.008) (0.008)
25% 3.710 3.745 3.875 3.891 4.066 4.080
(0.036)  (0.006) (0.038) (0.007)  (0.007) (0.007)
50% 3.535 3.551 3.657 3.680 3.845 3.855
(0.036)  (0.007) (0.037) (0.007)  (0.008) (0.008)
5% 2.319 2.374 2.358 2.430 2.536 2.516
(0.023)  (0.007) (0.024) (0.007)  (0.007) (0.007)
90% 1.124 1.109 1.067 1.093 1.125 1.121
(0.012)  (0.004) (0.012) (0.004)  (0.004) (0.005)
95% 0.909 0.837 0.872 0.813 0.829 0.917
(0.009)  (0.003) (0.009) (0.003)  (0.003) (0.004)
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Table 4.22 Square root of Monte Carlo estimated variance x100 (*) and
square root of Monte Carlo average of variance estimators x 100
(**) for Model 2.

n = 60; 1000 iterations. Local-residuals estimator calculated with

fixed number of bins (B = 6)

Standard error in parentheses.

N = 600,

— 1 [ & ) )
F(y) | Fr(y) — Fn(y)  Veely) | Fo(o) — F(y)  Ve(®)  Vikw(y) Vix(y)
5% 2.585 2.649 2.674 2.746 2.874 2.888

(0.027)  (0.011) (0.028) (0.011)  (0.012) (0.012)
10% 3.562 3.612 3.714 3.759 3.933 3.956
(0.036)  (0.010) (0.038) (0.010)  (0.011) (0.012)
25% 5.096 5.075 5.299 5.298 5.543 5.609
(0.052)  (0.007) (0.054) (0.008)  (0.008) (0.009)
50% 5.634 5.591 5.877 5.845 6.109 6.205
(0.056)  (0.006) (0.057) (0.006)  (0.007) (0.008)
5% 4.740 4.669 4.927 4.883 5.103 5.214
(0.049)  (0.007) (0.051) (0.007)  (0.008) (0.009)
90% 3.358 3.225 3.528 3.369 3.520 3.679
(0.034)  (0.009) (0.036) (0.009)  (0.009) (0.010)
95% 2.497 2.351 2.592 2.453 2.560 2.700
(0.026)  (0.009) (0.027) (0.010)  (0.010) (0.011)
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Table 4.23 Square root of Monte Carlo estimated variance x100 (*) and
square root of Monte Carlo average of variance estimators x 100
(**) for Model 3.

n = 60; 1000 iterations. Local-residuals estimator calculated with

fixed number of bins (B = 6)

Standard error in parentheses.

N = 600,

— 1 [ & ) )
F(y) | Fr(y) — Fn(y)  Veely) | Fo(o) — F(y)  Ve(®)  Vikw(y) Vix(y)
5% 2.445 2.455 2.555 2.564 2.682 3.010

(0.027)  (0.010) (0.027) (0.010)  (0.010) (0.015)
10% 3.187 3.228 3.327 3.375 3.529 3.876
(0.033)  (0.008) (0.034) (0.009)  (0.009) (0.014)
25% 3.691 3.798 3.828 3.968 4.149 4.536
(0.037)  (0.009) (0.039) (0.009)  (0.010) (0.014)
50% 3.323 3.556 3.390 3.713 3.882 4.078
(0.036)  (0.010) (0.037) (0.011)  (0.011) (0.012)
5% 3.319 3.578 3.364 3.739 3.910 4.010
(0.038)  (0.011) (0.038) (0.011)  (0.012) (0.012)
90% 3.270 3.259 3.314 3.419 3.573 3.651
(0.034)  (0.009) (0.034) (0.009)  (0.010) (0.011)
95% 2.569 2.523 2.601 2.643 2.763 2.934
(0.029)  (0.010) (0.020) (0.011)  (0.011) (0.014)
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Table 4.24 Square root of Monte Carlo estimated variance x100 (*) and
square root of Monte Carlo average of variance estimators x 100
(**) for Model 1. Standard error in parentheses. N = 1200,

n = 120; 1000 iterations.
with fixed number of bins (B = 10)

Local-residuals estimator calculated

— 1 [ & ) )
F(y) | Fr(y) — Fn(y)  Veely) | Fo(o) — F(y)  Ve(®)  Vikw(y) Vix(y)
5% 1.679 1.660 1.747 1.747 1.800 1.802

(0.040)  (0.010) (0.041) (0.010)  (0.011) (0.011)
10% 2.123 2.172 2.210 2.286 2.356 2.358
(0.046)  (0.009) (0.049) (0.009)  (0.009) (0.009)
25% 2.680 2.721 2.763 2.864 2.951 2.952
(0.060)  (0.008) (0.060) (0.008)  (0.008) (0.008)
50% 2.623 2.570 2.798 2.702 2.784 2.784
(0.063)  (0.009) (0.069) (0.009)  (0.009) (0.009)
5% 1.920 1.846 1.972 1.929 1.987 1.988
(0.041)  (0.008) (0.044) (0.009)  (0.009) (0.009)
90% 1.075 1.119 1.087 1.148 1.181 1.167
(0.025)  (0.006) (0.026) (0.007)  (0.007) (0.007)
95% 0.767 0.781 0.751 0.793 0.811 0.821
(0.017)  (0.005) (0.016) (0.006)  (0.006) (0.006)
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Table 4.25 Square root of Monte Carlo estimated variance x100 (*) and
square root of Monte Carlo average of variance estimators x 100
(**) for Model 2. Standard error in parentheses. N = 1200,

n = 120; 1000 iterations.
with fixed number of bins (B = 10)

Local-residuals estimator calculated

— 1 [ & ) )
Fly) | Frly)— In(y) Veely) | Frlo)— Fy)  Vely)  Vikwo(w) Vik(w)
5% 1.858 1.877 1.962 1.977 2.038 2.034
(0.044)  (0.012) (0.046) (0.013)  (0.013) (0.014)

10% 2.571 2.585 2.716 2.726 2.810 2.803
(0.057)  (0.011) (0.060) (0.012)  (0.012) (0.013)

25% 3.841 3.679 4.008 3.886 4.007 4.020
(0.088)  (0.008) (0.095) (0.009)  (0.009) (0.010)

50% 4.199 4.010 4.357 4.239 4.369 4.381
(0.094)  (0.006) (0.098) (0.007)  (0.007) (0.007)

75% 3.474 3.381 3.659 3.577 3.686 3.712
(0.078)  (0.008) (0.084) (0.008)  (0.008) (0.009)

90% 2.382 2.363 2.473 2.498 2.574 2.619
(0.054) (0.010) (0.054) (0.010)  (0.010) (0.011)

95% 1.800 1.743 1.868 1.842 1.897 1.934
(0.043) (0.011) (0.045) (0.011)  (0.012) (0.012)
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Table 4.26 Square root of Monte Carlo estimated variance x100 (*) and
square root of Monte Carlo average of variance estimators x 100
(**) for Model 3. Standard error in parentheses. N = 1200,

n = 120; 1000 iterations.
with fixed number of bins (B = 10)

Local-residuals estimator calculated

— 1 [ & ) )
F(y) | Fr(y) — Fn(y)  Veely) | Fo(o) — F(y)  Ve(®)  Vikw(y) Vix(y)
5% 1.758 1.723 1.834 1.822 1.878 1.969

(0.041) (0.011) (0.042) (0.011)  (0.011) (0.014)
10% 2.307 2.243 2.429 2.373 2.446 2.559
(0.051)  (0.009) (0.054) (0.009)  (0.010) (0.014)
25% 2.454 2.520 2.520 2.665 2.747 2.873
(0.055)  (0.010) (0.057) (0.010)  (0.010) (0.016)
50% 1.922 2.078 1.996 2.195 2.263 2.334
(0.041) (0.012) (0.043) (0.012)  (0.012) (0.014)
5% 1.870 1.948 1.930 2.054 2,117 2.179
(0.046) (0.013) (0.047) (0.014)  (0.014) (0.015)
90% 1.857 1.970 1.901 2.085 2.149 2.173
(0.046)  (0.011) (0.045) (0.011)  (0.012) (0.012)
95% 1.627 1.657 1.667 1.756 1.809 1.863
(0.041)  (0.010) (0.041) (0.011)  (0.011) (0.013)
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Table 4.27 Coverage probability for a 95% confidence interval of Fiy(y) based
on alternative variance estimators x 100 for Model 1. Stan-
dard error in parentheses. N = 600, n = 60; 1000 iterations.
Local-residuals estimator calculated with fixed number of bins

(1= 6)
Variance estimator used for the confidence interval

F(y) Vee () 0.9V:(y) 0.9ViKwo(y) 0.9Vik (9)
5% 89.24 88.86 89.52 89.68
(0.44) (0.44) (0.43) (0.43)
10% 92.96 92.64 93.38 93.48
(0.36) (0.37) (0.35) (0.35)
25% 94.92 94.70 95.40 95.50
(0.31) (0.32) (0.30) (0.29)
50% 94.28 94.08 94.78 94.92
(0.33) (0.33) (0.31) (0.31)
5% 93.84 93.18 93.82 93.78
(0.34) (0.36) (0.34) (0.34)
90% 92.64 90.72 91.48 91.22
(0.37) (0.41) (0.39) (0.40)
95% 89.60 86.76 86.70 89.56
(0.43) (0.48) (0.48) (0.43)
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Table 4.28 Coverage probability for a 95% confidence interval of Fiy(y) based
on alternative variance estimators x 100 for Model 2. Stan-
dard error in parentheses. N = 600, n = 60; 1000 iterations.
Local-residuals estimator calculated with fixed number of bins

(1= 6)
Variance estimator used for the confidence interval

F(y) Vee () 0.9V:(y) 0.9ViKwo(y) 0.9Vik (9)
5% 90.46 90.06 90.88 91.10
(0.42) (0.42) (0.41) (0.40)
10% 93.18 92.80 93.50 93.36
(0.36) (0.37) (0.35) (0.35)
25% 93.44 93.12 94.18 94.24
(0.35) (0.36) (0.33) (0.33)
50% 94.72 94.58 95.56 95.86
(0.32) (0.32) (0.29) (0.28)
5% 93.34 93.28 94.22 94.56
(0.35) (0.35) (0.33) (0.32)
90% 91.12 90.90 92.02 93.16
(0.40) (0.41) (0.38) (0.36)
95% 88.06 87.80 88.72 89.40
(0.46) (0.46) (0.45) (0.44)
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Table 4.29 Coverage probability for a 95% confidence interval of Fiy(y) based
on alternative variance estimators x 100 for Model 3. Stan-
dard error in parentheses. N = 600, n = 60; 1000 iterations.
Local-residuals estimator calculated with fixed number of bins

(B=6)
Variance estimator used for the confidence interval
F(y) Vee () 0.9V:(y) 0.9ViKwo(y) 0.9Vik (9)
5% 89.34 89.04 90.18 92.28
(0.44) (0.44) (0.42) (0.38)
10% 92.58 92.44 93.30 94.92
(0.37) (0.37) (0.35) (0.31)
25% 94.62 94.40 95.30 96.56
(0.32) (0.33) (0.30) (0.26)
50% 95.78 95.60 96.52 96.96
(0.28) (0.29) (0.26) (0.24)
5% 95.22 95.18 95.96 96.22
(0.30) (0.30) (0.28) (0.27)
90% 91.68 91.66 92.76 93.10
(0.39) (0.39) (0.37) (0.36)
95% 87.28 87.24 88.30 R9.42
(0.47) (0.47) (0.45) (0.43)
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Table 4.30 Coverage probability for a 95% confidence interval of Fiy(y) based
on alternative variance estimators x 100 for Model 1. Stan-
dard error in parentheses. N = 1200, n = 120; 1000 iterations.
Local-residuals estimator calculated with fixed number of bins

(B =10)
Variance estimator used for the confidence interval
F(y) Vee () 0.9V:(y) 0.9ViKwo(y) 0.9Vik (9)
5% 92.70 92.70 93.30 93.30
(0.82) (0.82) (0.79) (0.79)
10% 94.40 94.40 95.10 95.10
(0.73) (0.73) (0.68) (0.68)
25% 95.20 95.40 95.90 95.90
(0.68) (0.66) (0.63) (0.63)
50% 94.30 94.30 94.70 94.70
(0.73) (0.73) (0.71) (0.71)
75% 93.40 93.20 94.10 94.10
(0.79) (0.80) (0.75) (0.75)
90% 95.10 94.00 95.00 94.90
(0.68) (0.75) (0.69) (0.70)
95% 93.90 92.50 92.90 93.50
(0.76) (0.83) (0.81) (0.78)
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Table 4.31 Coverage probability for a 95% confidence interval of Fiy(y) based
on alternative variance estimators x 100 for Model 2. Stan-
dard error in parentheses. N = 1200, n = 120; 1000 iterations.
Local-residuals estimator calculated with fixed number of bins

(B =10)
Variance estimator used for the confidence interval
F(y) Vee () 0.9V:(y) 0.9ViKwo(y) 0.9Vik (9)
5% 92.60 92.50 92.90 92.90
(0.83) (0.83) (0.81) (0.81)
10% 94.70 94.60 95.40 95.20
(0.71) (0.71) (0.66) (0.68)
25% 93.80 93.90 95.00 95.30
(0.76) (0.76) (0.69) (0.67)
50% 94.70 94.80 95.50 95.40
(0.71) (0.70) (0.66) (0.66)
75% 93.40 93.50 94.20 94.20
(0.79) (0.78) (0.74) (0.74)
90% 93.70 93.90 94.50 95.00
(0.77) (0.76) (0.72) (0.69)
95% 91.40 91.60 92.10 92.50
(0.89) (0.88) (0.85) (0.83)
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Table 4.32 Coverage probability for a 95% confidence interval of Fiy(y) based
on alternative variance estimators x 100 for Model 3. Stan-
dard error in parentheses. N = 1200, n = 120; 1000 iterations.
Local-residuals estimator calculated with fixed number of bins

(B =10)
Variance estimator used for the confidence interval
F(y) Vee () 0.9V:(y) 0.9ViKwo(y) 0.9Vik (9)
5% 91.20 91.30 92.50 93.40
(0.90) (0.89) (0.83) (0.79)
10% 93.20 93.30 93.90 94.70
(0.80) (0.79) (0.76) (0.71)
25% 95.20 95.30 95.90 96.50
(0.68) (0.67) (0.63) (0.58)
50% 96.00 96.10 96.50 96.60
(0.62) (0.61) (0.58) (0.57)
75% 95.40 95.40 95.90 96.60
(0.66) (0.66) (0.63) (0.57)
90% 94.80 95.20 95.70 95.90
(0.70) (0.68) (0.64) (0.63)
95% 91.50 91.70 92.30 92.40
(0.88) (0.87) (0.84) (0.84)
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5 CONCLUSIONS

There are some general comments that we can make about the local-residuals esti-

mator of the finite population distribution function.

The local-residuals estimator was designed to overcome the sensitivity to model mis-
specification of the Chambers and Dunstan estimator, and to retain the good perfor-
mance of the model based Chambers and Dunstan method when the model is correctly
specified. The robustness of the local-residuals estimator resides in the construction of
small bins where it seems reasonable to assume a common distribution function for the
residuals. The variance estimators for the local-residuals estimator exhibit robustness

against model misspecification similar to the robustness of the local-residuals estimator.

The local-residuals estimator is a nondecreasing function of y with limit of zero when
y goes to —oo and limit equal to one as y — 4o00. The three estimators proposed by

Rao, Kovar and Mantel (1990) fail to meet this property.

The k(N — n) imputed values y;; used in the local-residuals estimator need to be
computed only once. As shown in (3.1.9), the distribution function can be computed
for as many y values as desired by using the y; from the sample and the y;; imputed
values, without recomputing the regression line or reusing the auxiliary information.
Variance estimators can also be computed from the y; from the sample and the y;;

imputed values. This may be important in practice to save computation time when
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there is a large number of auxiliary variables or a large number of points y where we

want to compute the distribution function.

The results of model consistency and limiting normal distribution for the local-
residuals estimator obtained in Theorem 3.2.3 and Theorem 3.2.4 require only that
the number of bins increase as the sample size increases. Thus the theory holds for
bins containing a fixed number of elements. Variance estimators that are consistent
under the same conditions were developed. One variance estimator, that proposed in

Theorem 3.3.2, requires the number of elements per bin to increase as NV increases.

When the number of bins increases faster than the number of elements per bin, by
Theorem 3.2.4, the local-residuals estimator has a limiting normal distribution. On the
other hand, when the number of bins is chosen on the basis of the sample, one may
be able to choose a number of bins to get efficiency close to that of the Chambers and

Dunstan estimator under a correctly specified model.
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