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1Estimation of the distribution function using auxiliary informationJuan Jos�e GoyenecheMajor Professor: Dr. Wayne A. FullerIowa State UniversityThe problem of estimating the �nite population distribution function of a variabley is studied. The framework is one in which auxiliary information is available for eachelement in the population, and is similar to the framework used by Chambers andDunstan (1986). In this study we introduce a new estimator, called the local-residualsestimator, of the �nite population distribution function with auxiliary information. Thelocal-residuals estimator is based on the distribution of the residuals from the regres-sion of the variable of interest, y, on the vector of auxiliary variables, x. One criticismof the estimator proposed by Chambers and Dunstan (1986) is that the performanceof the estimator is poor when the superpopulation model is incorrectly speci�ed. Thelocal-residuals estimator is designed to be robust against model misspeci�cation. Theasymptotic properties of the local-residuals estimator are studied under di�erent su-perpopulation models and the estimator is shown to be model consistent for the �nitepopulation distribution function. The conditions for asymptotic normality of the estima-tor are established and model consistent estimators of the variance of the local-residualsestimator are proposed. We also suggest an estimator of the superpopulation distribu-tion function based on the local-residuals estimator. A Monte Carlo study comparesthe performance of the proposed estimator with alternative estimators presented in theliterature.



1
1 INTRODUCTIONThe problem of distribution function estimation appears when we are interested inknowing the population proportion of values of a variable that are less than or equalto a certain value, or set of values. Soil scientists may be interested in estimating thedistribution of clay percent in the soil. Nutritionists may want to know the proportionof the population that consumes 30% or more of their calorie intake from saturatedfat. Certain functions of the distribution function are also of interest, such as quantilesand functions of quantiles. A method of distribution function estimation similar to theone presented in this work is being applied to the estimation of Soil Components inthe \Major Land Resource Area 107 Soil Survey Pilot Project" as described in Abbitt,Goyeneche and Schumi (1998).In many situations auxiliary information is available. There are di�erent types ofauxiliary information. The values of auxiliary variables may be known for each elementin the population, or for a large sample of the population. In other cases, only thepopulation means of the auxiliary variables are known.In this work, an estimator of the cumulative distribution function is presented thatuses auxiliary information and local smoothing of the conditional distribution function,conditional on the auxiliary information. The notation and models used, and a reviewof the literature are presented in Chapter 2. The properties of the estimator are studiedin Chapter 3. Monte Carlo results under di�erent superpopulation models are presentedin Chapter 4. Conclusions are presented in Chapter 5.



2
2 PREVIOUS WORK2.1 Framework and Models2.1.1 NotationA �nite population is a �nite collection of elements or units. The number of elementsin the population is denoted by N and is called the population size. Assume that theunits of the �nite population are identi�able and that a label is assigned to each unit.The set containing the N labels for the population elements is called the sampling frameand denoted by U. Without loss of generality, assume that U = f1; 2; : : : ; Ng. Whenreferring to the \unit of the population with label j", the shorter expression \unit j" isnormally used.Associated with each unit j in the population, there is a vector yj of characteristics.Let Fy = fy1; : : : ;yNg be the entire set of N vectors. Sometimes, there is anothervector xj of auxiliary information associated with unit j. Let Fx = fx1; : : : ;xNg be theset containing the auxiliary information for the N units in the �nite population.A sample is a subset of units of the �nite population. Let A denote the subset oflabels from U that are in the sample. The values for the vectors yj; j 2 A , are observed.Often we refer to the set A as the sample, with the understanding that A is the set



3of labels of the units in the sample. The complement of the sample with respect tothe �nite population, the set of units that are not selected, is denoted by A c = U� A(formally, A c is the set of labels of the nonselected units). The number of elements inA , denoted by n, is called the sample size. Let A be the set of all possible samples fromU. The sample design is a function p(�) : A �! [0; 1] such that p(a) = P(A = a) for anya 2 A, where p(a) is the probability that the sample with labels in the set a is selected.The probability that unit j is selected in the sample is called the �rst order inclusionprobability, or just inclusion probability, and is denoted by �j, where�j = P(j 2 A ) = Xa2A:j2ap(a);and the sum is taken over all samples that contain unit j. Similarly, higher orderinclusion probabilities can be de�ned. For instance, the second order inclusion probabilityis �jk = P(j 2 A \ k 2 A ) = Xa2A:j;k2ap(a);where the sum includes all samples that contain both j and k.The indicator function I(�) is widely used in sampling, and is de�ned asI(l) =8>><>>:1 if l is true0 if l is falsewhere l is some logical expression. A particular use of the indicator function is in de�ningthe indicator variable Ij as: Ij = I(j 2 A ). That is, Ij = 1 when unit j has been selectedand Ij = 0 otherwise.A �nite population parameter � is some function of Fy and Fx, � = �(Fy;Fx). Anestimator b� of � is some function of the observed information. If Fx is known, that is,xj is known for all j 2 U, then b� = b�(fyj; j 2 A g;Fx): (2.1.1)



4More details about di�erent types of auxiliary information are given in Section 2.1.3.Let us assume that y is scalar, or that we concentrate our attention on just onecharacteristic, y. The �nite population distribution function for the variable y isFN( _y) = N�1Xi2UI(yi 6 _y) (2.1.2)for _y 2 <. Unless otherwise noted, the terms distribution function and �nite populationdistribution function will be used as synonyms. Assume Fx is known. An estimator ofthe distribution function expressed as a function of the observed y information and ofFx is bFN( _y) = bFN( _y; fyj; j 2 A g;Fx): (2.1.3)2.1.2 Asymptotic considerationsSince the population under study is intrinsically �nite (of size N), asymptotic calcu-lations are based on a sequence of populations and samples with increasing sample size,n, and increasing population size, N (see Isaki and Fuller, 1982). A sequence of �nitepopulations, which implies sequences of UN, FyN , FxN , A N , AN and nN are de�ned forN = 1; 2; : : : . The asymptotic properties of an estimator b�N are then de�ned in termsof this sequence.We may treat FyN as a set of �xed quantities, or consider it to be a particularrealization of N random vectors Yj. The set of conditions that determines the jointdistribution of Y1; : : : ;YN is called the superpopulation model. See Cassel et al. (1993,page 80). The set FxN of auxiliary information is considered �xed in our discussion. Itmay be the case that FxN is a part of the superpopulation model, but unless otherwisestated, the auxiliary information will be considered �xed.



5Note that in the superpopulation context,� when referring to a particular �nite population, the population includes a setof units with their labels UN, the auxiliary information FxN , and a particularoutcome for Y1; : : : ;YN . We will sometimes use FN to denote a particular �nitepopulation, where FN = fUN;FxN ;FyNg.� treating FyN as a set of �xed quantities is equivalent to considering a superpopu-lation model, but restricting our interest to a particular realization of the model,the realization that produced FyN . We may, then, use the superpopulation modelapproach in general, and condition on FN when interested in a particular �nitepopulation.When we assume that the �nite population is a realization from the superpopula-tion and assume the sample is selected according to a sampling design, the probabilitystructure contains both the sampling probability and the superpopulation model.The properties of an estimator can be considered with respect to a particular �nitepopulation. The estimator b�N is design unbiased for the �nite population parameter �Nif E(b�N ��FN ) = �N ;where the notation denotes conditioning on the particular �nite population. Hence,the expectation is taken with respect to the sample design. For each sample a 2 AN ,b�Na is based on the information from those units contained in the sample a, and theexpectation is E(b�N ��FN) = Xa2AN b�Na p(a):



6The estimator b�N is asymptotically design unbiased for the �nite population parameter�N if limN!1E(b�N � �N ��FN ) = 0The estimator b�N is design consistent for the �nite population parameter �N iflimN!1P(jb�N � �N j > � ��FN ) = 0for every � > 0.The properties of an estimator can also be considered under the superpopulationmodel, for a particular sample A N . The estimator b�N is model unbiased for the super-population parameter � if E(b�N �� A N ) = �where the expectation is with respect to the model that generates Yj , and b�N is afunction of Yj , for j 2 A N . The estimator b�N is asymptotically model unbiased for thesuperpopulation parameter � if limN!1E(b�N � � �� A N ) = 0:The estimator b�N is model consistent for the superpopulation parameter � iflimN!1P(jb�N � �j > � �� A N ) = 0for every � > 0.2.1.3 Auxiliary informationUse of auxiliary information, either at the design stage or at the estimation stage,to improve the precision of estimates is very common in survey sampling. Auxiliary



7information can take di�erent forms. The following is a nonexhaustive list of possi-ble situations where the auxiliary information in the form of an auxiliary vector x isavailable:� for each unit in the population the value of the auxiliary vector x is known.� for multiphase samples, the value of x is observed for a large sample.� summary information is known for x in the form of a histogram or frequency countfor the �nite population.� only the population mean or total of x is known.Usually, multiple sources of information are available for the auxiliary variables thatform the vector x. For instance, the values for a subgroup of the auxiliary variables areavailable for all units in the population, while the values for the rest of the auxiliaryvariables are only known for units in a sample larger than A .2.1.4 Superpopulation modelAssume that the �nite population (FyN ) is generated by a superpopulation model ofthe form Yk = x0k� + h(xk)Uk; k = 1; 2; : : : ; N; (2.1.4)where � is an unknown parameter, h(�) > 0 is a known function that accounts forheteroescedasticity, and the Uk are independent identically distributed random variableswith zero mean and distribution function G(u). We will use the shortcut notation hk =h(xk) sometimes. The set FxN is assumed �xed. A realization of the superpopulation



8model random variables, denoted by Y1; Y2; : : : ; YN , corresponds to a particular �nitepopulation FyN = fy1; y2; : : : ; yNg.The superpopulation distribution function of Y isF ( _y) = P(Y 6 _y) = N�1Xi2UP(Yi 6 _y �� x = xi) (2.1.5)= N�1Xi2UEfI(Yi 6 _y) �� x = xig:Note that P(Y 6 _y) = P(Y 6 _y �� FxN);since the set FxN is assumed �xed. The superpopulation distribution function (2.1.5) canbe seen as the model expectation of the �nite population distribution function de�nedin (2.1.2).2.2 Distribution Function Estimation without Auxiliary Infor-mationThe Horvitz-Thompson estimator of FN( _y) isbFHT( _y) = �Xj2A ��1j 	�1�Xj2A ��1j I(yj 6 _y)	 (2.2.1)where �j is the inclusion probability for unit j. Estimator (2.2.1) is the ratio of theHorvitz-Thompson estimator of the proportion of units in the �nite population thathave values of y less than or equal to _y, �Pj2A ��1j I(yj 6 _y)	, to the Horvitz-Thompsonestimator of the population size, �Pj2A ��1j 	. In some designs the denominator partis equal to N for any sample in the sample space A. Note that the Horvitz-Thompsonestimator (2.2.1) of the distribution function does not use auxiliary concomitant variablesat the estimation stage. Sometimes auxiliary information is used at the design stage of



9a sampling survey, and for such designs, the auxiliary information may be implicit inthe inclusion probabilities �j that appear in (2.2.1).Francisco and Fuller (1991) considered the problem of distribution function and quan-tile estimation for complex designs. Restrictions on the sampling design are speci�ed andlimiting results for the estimator (2.2.1) are established for strati�ed cluster sampling. Amethod for constructing con�dence intervals for superpopulation quantiles based on testinversion of the distribution function is presented. An expression for the joint limitingdistribution of a vector of sample quantiles is given.2.3 Distribution Function Estimation using Auxiliary Informa-tionChambers and Dunstan (1986) introduced a model based method to incorporateauxiliary information from a variable x when its value is known for all units in thepopulation. Chambers and Dunstan assumed a superpopulation model of the form ofmodel (2.1.4), with h(x) = x1=2. The resulting model,Yk = xk� + x1=2k Uk; (2.3.1)corresponds to the customary \ratio" model in survey sampling. The distribution of therandom variables Yk and Uk are speci�ed in the superpopulation model for k 2 U. Arealization of the Uk generates N particular values for the residuals that are denotedby u1; u2; : : : ; uN . A set of N residuals u1; u2; : : : ; uN and the auxiliary informationx1; x2; : : : ; xN generate a set of values of y, that is, a particular �nite population FyN .The distribution function FN( _y) de�ned in (2.1.2) can be written asFN( _y) = N�1hXj2A I(yj 6 _y) + Xi2Ac I(yi 6 _y)i (2.3.2)



10where the unknowns in formula (2.3.2) are in the last term of the sum. Letting hi = h(xi),Chambers and Dunstan estimate the last term of (2.3.2) by observing that under model(2.3.1) E�I(Yi 6 _y) �� x = xi� = P�Yi 6 _y �� x = xi� = G�h�1i [ _y � xi�]� (2.3.3)where G(�) is the distribution function of U de�ned in (2.1.4). An estimator of the termPi2Ac I(yi 6 _y) can be derived by estimating Pi2A c G�h�1i [ _y � xi�]�. Chambers andDunstan presented the following estimator:bFCD( _y) = N�1hXj2A I(Yj 6 _y) + Xi2A c Gn�h�1i [ _y � xibn]�i (2.3.4)where bn = nXj2A h�2j YjxjonXj2A h�2j x2jo�1 = nXj2A YjonXj2A xjo�1is an estimator of �, and Gn is a sample-based estimator of the distribution function ofU in (2.3.1). The Gn is a function of the sample residuals, buj = Yj � xjbn, and is equalto Gn�h�1i [ _y � xibn]� = n�1Xj2A I�h�1j [Yj � xjbn] 6 h�1i [ _y � xibn]�= n�1Xj2A I�xibn + hih�1j [Yj � xjbn] 6 _y�:The Chambers and Dunstan Monte Carlo study, done with a population of 338sugar cane farms that seems to follow model (2.3.1), shows that the estimator bFCD canbe considerably more e�cient than the design based estimator (2.2.1) when the modelis true.Model based asymptotic results for bFCD are based on Randles (1982). Chambers



11and Dunstan study the estimation error for bFCD under model (2.3.1), where the error isbFCD( _y)� FN( _y) = N�1hXi2Ac Gn�h�1i [ _y � xibn]��Xi2Ac I(Yi 6 _y)i: (2.3.5)Note that the �rst term on the right hand side of (2.3.5) depends on the Y randomvariables of the sample,Xi2Ac Gn�h�1i [ _y � xibn]� = Xi2Ac n�1Xj2A I�h�1j [Yj � xjbn] 6 h�1i [ _y � xibn]�;while the second term on the right hand side of (2.3.5) depends on the Y of the nonsampleunits. If we condition on A , the sample indices, the two terms in (2.3.5) are independentunder the model. LetF �r ( _y; bn) = (N � n)�1Xi2A c Gn�h�1i [ _y � xibn]� (2.3.6)and Fr( _y) = (N � n)�1 Xi2Ac I(Yi 6 _y); (2.3.7)where F �r ( _y; bn) is the part of the estimation error that depends on the sample, andFr( _y) is the proportion of nonselected units with Yi less than or equal to _y. Bothrandom quantities, F �r ( _y; bn) and Fr( _y), are restricted to be between 0 and 1. Then,the estimation error bFCD( _y) � FN( _y) can be seen as a di�erence between two randomvariables that are conditionally independent under the model multiplied by N�1(N�n),bFCD( _y)� FN( _y) = N�1(N � n)�F �r ( _y; bn)� Fr( _y)�:The conditional variance of the estimation error (2.3.5) is thenV � bFCD( _y)� FN ( _y) �� A � = nN�1(N � n)o2nV �F �r ( _y; bn) �� A � + V �Fr( _y) �� A �o= n1� nN�1o2nV �F �r ( _y; bn) �� A � + V �Fr( _y) �� A �o;(2.3.8)



12because F �r ( _y; bn) and Fr( _y) are conditionally independent given A . Chambers andDunstan denote the �rst variance on the right hand side of (2.3.8) as W�r( _y; �) and thesecond variance on the right hand side of (2.3.8) as Wr( _y; �), that is,W�r( _y; �) = V �F �r ( _y; bn) �� A �;and Wr( _y; �) = V �Fr( _y) �� A �:Based on Theorem 2.13 in Randles (1982), Chambers and Dunstan write the �rst vari-ance on the right hand side of (2.3.8) asV �F �r ( _y; bn) �� A � =W�r( _y; �) = Dr( _y; �) V�( _y; �) D0r( _y; �);where Dr( _y; �) is the row vectorDr( _y; �) = �1; n�1(N � n)�1Xj2A Xi2Ac �[h�1j xj � h�1i xi]g�h�1i [ _y � xi�]�	�and V�( _y; �) is the conditional variance matrix of the vector �F �r ( _y; �); bn�0,V�( _y; �) = V ��F �r ( _y; �); bn�0 �� A � = �V �ij�:The elements of V�( _y; �) areV �11 = n�1(N � n)�2nXi2Ac Xk2Ac G�min �h�1i [ _y � xi�]; h�1k [ _y � xk�]�	�hXi2A c G�h�1i [ _y � xi�]�i2oV �12 = V �21 = hXj2A h�2j x2ji�1n�1(N � n)�1Xj2A Xi2Ac h�1j xj ��Ehh�1j [Yj � xj�] I�xi� + hih�1j [Yj � xj�] 6 _y� �� A iV �22 = hXj2A h�2j x2ji�1V (U):



13The second variance on the right hand side of (2.3.8) isV �Fr( _y) �� A � =Wr( _y; �)= V �[N � n]�1Xi2Ac I[Yi 6 _y] �� A �= (N � n)�2Xi2Ac V �I[Yi 6 _y] �� A �= (N � n)�2Xi2Ac G�h�1i [ _y � xi�]��1�G�h�1i [ _y � xi�]�	;since the Yi are conditionally independent given A , V �I[Yi 6 _y] �� A � = V �I[Yi 6 _y]� =P(Yi 6 _y)[1� P(Yi 6 _y)] and P(Yi 6 _y) = G�h�1i [ _y � xi�]�.Chambers and Dunstan use the following set of assumptions to �nd the limitingdistribution of the estimation error (2.3.5). The notation of Section 2.1.2 is used.(CD.1) limN!1 nNN�1 = c, where c 2 (0; 1),(CD.2) G(u), the distribution function of U in model (2.3.1), is di�erentiable, withderivative g(u),(CD.3) there exist M1;M2 < 1, such that jxkj < M1 and hk < M2 for all N and allk 2 UN,(CD.4) for arbitrary b, 0 < limN!1 F �r ( _y; b) < 1, where F �r ( _y; b) is de�ned in (2.3.6),(CD.5) bn is asymptotically normal under (2.3.1), that is, [V (bn)]�1=2[bn��] convergesin distribution to a standard normal distribution as N !1.If conditions (CD.1) through (CD.5) hold, the Chambers and Dunstan result is thatn(1 � nN�1)2hW�r( _y; �) +Wr( _y; �)io�1=2n bFCD( _y)� FN( _y) �� A o �! N(0; 1)(2.3.9)



14in distribution. Note that there are no direct assumptions on the sample design, onlyon the properties of the sample.Chambers and Dunstan consider the possibility of misspeci�cation of the model whenthe mean part of (2.3.1) holds but the variance function is ha(x) 6= h(x). In general,bFCD( _y)� FN( _y) is still asymptotically normal but with nonzero mean. The asymptoticbias is close to zero if the sample is such that [h(xj)ha(xi)][h(xi)ha(xj)]�1 is approxi-mately one for all j 2 A c .Dunstan and Chambers (1989) extend the model based approach to the case whenonly histogram summary information is known for the auxiliary variable. The distri-bution function estimator and an estimator of its variance are adapted to the case of\limited information". Dunstan and Chambers' Monte Carlo results suggest that the\limited information" estimator is almost as e�cient as the corresponding \full infor-mation" one, and that the con�dence intervals generated by either of these model basedmethods have better coverage properties than con�dence intervals for the design basedestimator (2.2.1).Rao, Kovar and Mantel (1990) suggested design based ratio and di�erence estima-tors of the distribution function that also make use of the auxiliary information at theestimation stage. Rao, Kovar and Mantel emphasize that the Chambers and Dunstanestimator is not design unbiased and that it is not robust against model misspeci�cation.The variable I(xie� 6 _y) is used as an auxiliary variable for I(yi 6 _y). The customaryratio and di�erence estimators are then de�ned as:bFRKMr( _y) = N�1nXj2A ��1j I(yj 6 _y)onXj2A ��1j I(xj e� 6 _y)o�1nXi2UI(xie� 6 _y)o(2.3.10)



15and bFRKMd( _y) = N�1nXj2A ��1j I(yj 6 _y) + hXi2UI(xie� 6 _y)�Xj2A ��1j I(xj e� 6 _y)io(2.3.11)where e� = [Pj2A ��1j h�2j yjxj][Pj2A ��1j h�2j x2j ]�1. When the variance function h(x)is speci�ed to be h(x) = x1=2, e� = [Pj2A ��1j xj]�1[Pj2A ��1j yj]. Estimator (2.3.11)is design unbiased, and estimator (2.3.10) is approximately design unbiased. The to-tal variation of the N quantities xi� is in general smaller than the total variation ofyi. Estimators (2.3.10) and (2.3.11) are not model unbiased. If model (2.3.1) holdsE[Yi] = xi�, but E[I(Yi 6 _y)] = P(Yi 6 _y) 6= I(E[Yi] 6 _y) = I(xi� 6 _y). ThereforeE[ bFRKMr( _y)� FN( _y) �� A ] 6= 0 and E[ bFRKMd( _y)� FN( _y) �� A ] 6= 0. Also,limn;N!1N�1 Xi2UN I(xi� 6 _y) 6= limn;N!1FN( _y);unless model (2.3.1) �ts exactly with V (U) = 0.An asymptotically design unbiased, model unbiased estimator is based on the distri-bution of U . Assume that for i 2 Uwe know the quantitiesGi = N�1Xk2UI�h�1k [yk � xkbn] 6 h�1i [ _y � xibn]�;that is, the �nite population distribution function of u evaluated at h�1i [ _y � xibn]. Adesign unbiased, asymptotically model unbiased estimator of FN( _y) is thenF �RKMdm( _y) = N�1�Xj2A ��1j I(yj 6 _y) + �Xi2UGi �Xj2A ��1j Gi	�: (2.3.12)Estimator (2.3.12) is a di�erence estimator that uses the auxiliary variable Gi, hence,estimator (2.3.12) is design unbiased. If model (2.3.1) holds,E�Xj2A ��1j I(yj 6 _y) �� A N � = E�Xj2A ��1j Gi �� A N �;



16thus, estimator (2.3.12) is model unbiased. The Gi can not be computed, since � isunknown, and we only know yj for j 2 A . A feasible estimator of FN is constructed byusing bGi = nXj2A ��1j o�1nXj2A ��1j I�hih�1j (yj � xj e�) + xie� 6 _y�oas an design consistent estimator of Gi andbGic = nXj2A (�ij=�i)�1o�1nXj2A (�ij=�i)�1I�hih�1j (yj � xj e�) + xie� 6 _y�oas a design consistent estimator of Gi, conditional on i 2 A , where �ij=�i is the con-ditional probability of selecting units i and j given that unit i has been selected. Theestimator, bFRKMdm( _y) = N�1nXj2A ��1j I(yj 6 _y) + �Xi2U bGi �Xj2A ��1j bGic�o (2.3.13)is design consistent and asymptotically model unbiased.Rao, Kovar and Mantel used two populations in a Monte Carlo study: the \Chambersand Dunstan" population, the population with 338 sugar cane farms that seems to follow(2.3.1), and the \Hansen, Madow and Tepping" population generated by the modelYk = 0:40 + 0:25xk + x3=4k Uk (2.3.14)where the Uk are independent and identically distributed with zero mean. This model\was designed to make it not distinguishable from model (2.3.1)" (see Hansen et al.,1983). When evaluated at the 25th, 50th and 75th population quantiles ( _y� : FN( _y�) =�; � = 0:25; 0:50; 0:75), estimator (2.3.13) performs better than estimators (2.3.10)and (2.3.11) in both populations. The Chambers and Dunstan estimator (2.3.4) showslarger bias than estimator (2.3.13) (even in the �rst population). The mean squareerror for the Chambers and Dunstan estimator is smaller for the �rst population, but



17estimator (2.3.13) has smaller mean square error for � = 0:25 and � = 0:75 in the secondpopulation. The designs used in the Monte Carlo study were simple random samplingand strati�ed with proportional allocation for the \Chambers and Dunstan" populationand a strati�ed design with ten strata and equal sample size in each stratum for the\Hansen, Madow and Tepping" population. The strata for the \Hansen, Madow andTepping" population were created such that sum of x is approximately equal for eachstratum.The three estimators presented by Rao, Kovar and Mantel are functions of Horvitz-Thompson estimators of totals. Although the estimators involve the estimated param-eter e�, standard Horvitz-Thompson estimators of the variance can be applied. Thevariance estimator for estimator (2.3.13), bFRKMdm( _y), requires computation of third or-der inclusion probabilities �ijk, which may be cumbersome to compute for some designs.For quantile estimation, Rao, Kovar and Mantel use ratio and di�erence estimatorsthat make use of the sample and population quantiles for the x variable in order toimprove precision over the sample quantiles for y. Note that bFRKMdm( _y) and bFRKMd( _y)may not be monotone increasing. Rao, Kovar and Mantel do not present quantile esti-mators that rely on inversion of the estimated distribution function.Dorfman (1993) discusses estimators (2.3.4) and (2.3.13), and proposes a modi�edversion of (2.3.13) that is less dependent on design based ingredients and does not needcomputation of second order probabilities. Dorfman observes that the estimator (2.3.4)is preferable when \reasonably careful modeling" analysis has been conducted.Rao and Liu (1992) distinguish four di�erent approaches for the use of auxiliaryinformation at the estimation stage. With respect to distribution function estimation,the four approaches are:



18� design based approach, which leads to estimators like (2.2.1), that do not useauxiliary information, and estimators (2.3.10) and (2.3.11), that use auxiliary in-formation. Rao and Liu note that in general \the correlation between I(yj 6 _y)and I(xj� 6 _y) appears to be weaker than the correlation between yj and xj."� prediction approach, which includes the model based estimator (2.3.4).� model assisted approach, which leads to the estimator (2.3.13).� conditional approach, where the estimator is constructed relying only on the knowl-edge of �x, and not on all values of xj; j 2 U.An interesting comparison of the properties of the estimators (2.3.4) and (2.3.13) isgiven in Chambers, Dorfman and Hall (1992). The large-sample mean square errors ofboth estimators are considered from a theoretical point of view. None of the estimatorsdominates the others for all _y 2 <. Chambers, Dorfman and Hall consider the modelYk = a+ bxk + Uk;where the design points xk are the realization of a random variable with expected value�x, variance � 2, and design density d(x). The design density d(x) used by Chambers,Dorfman and Hall (1992) is the limiting probability density function of the x in the su-perpopulation model. The parameters a and b are unknown, and the Uk are independentidentically distributed with mean zero and density g(u). Chambers, Dorfman and Hall(1992) show that the di�erenceV � bFRKMdm( _y)� FN( _y)	� V � bFCD( _y)� FN ( _y)	 (2.3.15)is positive when g(u) is symmetric about zero and d(x) is symmetric about �x, andthe model used to construct bFRKMdm and bFCD is true. The di�erence (2.3.15) can benegative under di�erent speci�cations of g(u) and d(x). For instance, under the followingconditions,



19� g(u) bounded on a compact support, with the exception of a pole at u0, whereg(u) / ju� u0j�3=4 as u! u0,� the design points have a density bounded on a compact support, with the exceptionof a pole at x0, where d(x) / jx� x0j�3=4 as x! x0,� �x = 0,� _y0 = a+ bx0 + u0,the di�erence (2.3.15) becomes negative for _y = _y0. Even though the previously de-scribed situation is very extreme, it shows that from a theoretical viewpoint there aresituations where bFRKMdm outperforms bFCD even when the model used in the construc-tion of both estimators is correctly speci�ed.Wang and Dorfman (1996) combine estimators bFCD and bFRKMdm in a weightedaverage: bFWD( _y) = w _y bFCD( _y) + (1� w _y) bFRKMdm( _y) (2.3.16)The weight w _y is estimated from the sample in order to minimize the asymptotic meansquare error. Wang and Dorfman show that estimators (2.3.4) and (2.3.13) have somecomponents that are negatively correlated. Wang and Dorfman take advantage of thisnegative correlation in the method for selecting w _y. An estimator of the variance of bFWDis given. This variance estimator uses quantities that are calculated in the computationof the optimum w _y. An interesting byproduct of the computation of estimator (2.3.16)is the value that w _y assumes for each value of _y. These values of w _y give \an idea of therelative position of bFWD between bFCD and bFRKMdm". Small values of w _y indicate thatbFRKMdm is preferred over bFWD in the construction of bFWD. Values of w _y close to one,on the other hand, indicate that bFWD is preferred over bFRKMdm in the construction ofestimator (2.3.16).



20Wang and Dorfman claim that the new estimator bFWD is preferable to both theChambers and Dunstan and the Rao, Kovar and Mantel estimators, in the sense that\losses of e�ciency in the worst cases are marginal and gains can be appreciable."2.4 Nonparametric EstimationThis section refers to the group of techniques for nonparametric estimation of func-tions known as kernel smoothing. Kernel smoothing permits one to explore relationshipsin data sets without imposing a full parametric model.Let 
(xk) = E(Yk �� Xk = xk) be the conditional expectation of Y given xk. Theconditional expectation 
(x) is usually called the regression of Y on x. The regressionfunction minimizes the mean square error E[Yk � `(xk)]2 over all functions `(x). Theapproach used in nonparametric regression is to approximate 
(x) by a function m(x)that is not restricted to belong to a �xed �nite parameter family.The method of local polynomial kernel estimators estimates the regression function ata point x0 by �tting a pth degree polynomial to the data using weighted least squares.The weights are computed using the kernel function. The kernel function is usuallyselected to be a density symmetric about x0 with a scaling parameter b called the band-width. The weights used in the least squares �tting arew(xk) = b�1K�b�1[x0 � xk]� (2.4.1)where K is the kernel function. Let Kb denote the rescaled kernel functionKb(x0 � x) = b�1K�b�1[x0 � x]�:Normally K is selected to be a symmetric unimodal density that assigns larger weightsto points close to x0. Points closer to x0 then have more in
uence on the estimation of



21m(x0) than points that are farther from x0. The relative distance between x0 and otherpoints is controlled by the bandwidth. For small b, bm(x0) depends more heavily on thepoints closest to x0 and the regression curve is a more wiggly, undersmoothed estimate.As b ! 0, bm(x) tends to an interpolation between the points (yj; xj); j 2 A . Whenb is large an oversmoothed estimate is produced, the weights tend to be approximatelyequal and the estimate tends towards the ordinary least squares �t (Wand and Jones,1995, page 117). The terms \small" and \large" b are relative to some optimum b. Ifwe select a value of b smaller than the optimum b we have a undersmoothed estimate.If we select a value of b larger than the optimum b we have a oversmoothed estimate.The local polynomial kernel smoothing method is carried out as follows. Consider apth degree polynomial �0 + �1(xk � x0) + : : :+ �p(xk � x0)pon the values of x centered at x0. Let b� = (b�0; b�1; : : : ; b�p)0 be the weighted least squaresestimator of �, using the weights w(xk) de�ned in (2.4.1). Since the independent variableis centered at x0, bm(x0) = b�0:Recall that bm(x0) is also a function of b and K. A simple formula for bm(x0) is availablewhen p = 0 bm(x0) = hXj2A Kb(x0 � xj)i�1hXj2A Kb(x0 � xj) Yji (2.4.2)Estimator (2.4.2) is known as the Nadaraya-Watson estimator.In the �nite population setting the sample weights are used by some authors toobtain consistent estimators of the �nite population regression �t. The weights used inthe weighted least squares estimator of � are then ��1k w(xk), where �k is the �rst order



22probability for unit k and w(xk) is de�ned in (2.4.1). The formula for the Nadaraya-Watson estimator (2.4.2) is thenbm(x0) = hXj2A ��1j Kb(x0 � xj)i�1hXj2A ��1j Kb(x0 � xj) Yji (2.4.3)if sampling weights are used.A measure of performance of the kernel smoothing estimator is the mean square errorMSE�bm(x0)� = E[bm(x0)�m(x0)]2 (2.4.4)for the point x0. The mean square error (2.4.4) is conditional on the x values, that is,considering the x �xed. A consolidated error measure for the whole range of x is theweighted mean integrated square errorMISE�bm� = EnZ [bm(x)�m(x)]2d(x) dxo; (2.4.5)where d(x) is the design density de�ned in Section 2.3. Assume that \b" correspondsto the value of the nth term of a sequence of bandwidths. Asymptotic considerationsusually assume that limn!1 b = 0limn!1 nb =1:The mean square error can be decomposed into two termsMSE� bm(x0)� = V � bm(x0)�+ �E[bm(x0)]�m(x0)�2 (2.4.6)The bias part in (2.4.6), E[bm(x0)] � m(x0), increases with b, so we need b small tohave small bias contribution to the mean square error. On the other hand, the variancepart in equation (2.4.6) is O�(nb)�1� therefore reducing b will increase the variancecontribution to MSE� bm(x0)�. Section 5.3 of Wand and Jones (1995) considers thisvariance-bias trade-o� problem in determining the value of b for the linear case, p = 1.



23Choosing a particular kernel function K and an appropriate bandwidth b are someof the central issues in kernel smoothing. The selection of the bandwidth has a muchlarger e�ect on the performance of the estimator than the selection of K. The methodsof selection of the bandwidth based on the data are called bandwidth selectors. Onebandwidth selector often used chooses b to minimize the MISE(bm),bMISE = minb �MISE(bm)�:The weighted mean integrated square error is unknown, for it depends on m(x). Anestimator of bMISE is used in practice.Another point of concern is the performance of bm(�) near the boundaries of the xvalues, that is, close to min(xj; j 2 A ) and max(xj; j 2 A ), where the kernel window maybe partially empty of data. The problem of estimating bm(�) near the boundaries is knownas the boundary bias problem. The boundary bias problem deals with the di�erence inthe orders of magnitude of the bias in an interior point and near the boundary of the xdata.2.5 Nonparametric Estimation of the Distribution FunctionKuo (1988) and Kuk (1993) use nonparametric estimators of the joint distributionfunction of x and y, as instruments for estimating the distribution function of y. Kuoproposed an estimator of the joint distribution functionbFKuo;xyN ( _x; _y) = N�1nXj2A I(xj 6 _x; yj 6 _y) +Xi2Ac Xj2A WijI(xi 6 _x; yj 6 _y)o(2.5.1)where the weights Wij can be computed using one of the following methods:1. naive estimator: Wij = �I(jxi � xjj < �)��Pj2A I(jxi � xjj < �)��1:



242. kernel method: Wij = �K[b�1(xi�xj)]	�Pj2A K[b�1(xi�xj)]	�1, for some func-tion K such that R K(x)dx = 1.3. k nearest neighbors method: Wij = k�1 if xj is one of the k nearest neighbors ofxi, Wij = 0 otherwise.Kuo does not discuss methods to select optimal � or k, and refers the reader to Silverman(1985) for the selection of b. Estimator (2.5.1) uses the y values in the sample to imputefor the unobserved y. Note that Pj2A Wij = 1 for all i 2 A c . For each i 2 A c ,Pj2A WijI(xi 6 _x; yj 6 _y) is a quantity between 0 and 1 that tries to predict theunknown I(xi 6 _x; yi 6 _y). Special care in selecting � and b is required to avoid unde�nedweights in methods 1 and 2. The estimator of the �nite population distribution functionof y is the corresponding marginal of (2.5.1):bFKuo( _y) = N�1nXj2A I(yj 6 _y) +Xi2A c Xj2A WijI(yj 6 _y)o (2.5.2)A Monte Carlo study comparing estimators (2.5.1), (2.5.2) and (2.2.1) is presented forthree populations and three sampling designs. Estimator (2.5.2) does not perform muchbetter that the Horvitz-Thompson estimator (2.2.1) in the Monte Carlo study.Kuk estimates the joint distribution function using kernel smoothing to obtainbFKuk;xyN ( _x; _y) = nXj2A ��1j o�1nXj2A ��1j W [b�1( _x� xj)]W [b�1( _y � yj)]o�1 (2.5.3)where W (u) = eu(1+ eu)�1 is the standard logistic distribution function. The estimatorof the bivariate density corresponding to (2.5.3) isbfKuk;xy( _x; _y) = b�2nXj2A ��1j o�1nXj2A ��1j w[b�1( _x� xj)]w[b�1( _y � yj)]o�1



25where w(u) = eu(1 + eu)�2. A smoothed estimator of the conditional distribution of ygiven x isbFKuk;yjx( _y �� _x) = nXj2A ��1j w[b�1( _x� xj)]o�1nXj2A ��1j w[b�1( _x� xj)]W [b�1( _y � yj)]o�1Since the distribution function of x, denoted by FxN(�), is assumed to be known, theestimator of the distribution function of y can be computed asbFKuk( _y) = Z bFKuk;yjx( _y �� _x)dFxN( _x) =Xi2U bFKuk;yjx( _yjxi) (2.5.4)Note that only one bandwidth parameter b is used for both x and y. Kuk recommendspre-scaling of x and y to similar ranges. The value for the bandwidth parameter isselected as b = n�1Rx, where Rx denotes the range of x: Rx = maxfxi; i 2 Ug �minfxi; i 2 Ug. An expression for the variance of (2.5.4) and a discussion on designconsistency of bFKuk( _y) are provided. A Monte Carlo study (based on 200 samples)shows that estimator (2.5.4) is robust against misspeci�cation of the model. Kuk statesthat based on empirical evidence, estimator (2.5.4) \is more e�cient than the estimatorssuggested by Rao et al. (1990)."Chambers, Dorfman and Wehrly (1993) use nonparametric regression to estimateFr( _y), the distribution function of the unobserved unitsFr( _y) = (N � n)�1Xi2A c I(yi 6 _y): (2.5.5)Chambers, Dorfman and Wehrly assume a working model with conditional expectationequal to E�I(Yj 6 _y) �� xj� = �(xj): (2.5.6)with the possibility that the conditional expectation of Y given x is proportional to x,that is E�Yj �� xj� = xj�;



26as in the case of model (2.3.1).Chambers, Dorfman and Wehrly present two nonparametric estimators of (2.5.5).The Nadaraya-Watson estimator using a uniform kernel U(xi � b; xi + b) isbFNWCDWr( _y) =Xj2A mNWj I(yj 6 _y) (2.5.7)wheremNWj = (N � n)�1Xi2A c I(xi � b 6 xj 6 xi + b)nXk2A I(xi � b 6 xk 6 xi + b)o�1:The other nonparametric estimator of Fr(�) is the Gasser-M�uller kernel smoother. As-sume that the population labels are ordered by increasing value of x: x1 6 x2 6 : : : 6 xN ,and that j1 < j2 < : : : < jn are the labels of the units in the sample. De�ne a0 = �1;a` = 2�1(xj` + xj`+1) for ` = 1; : : : ; n � 1; an = +1. The Gasser-M�uller estimator of(2.5.5) is bFGMCDWr( _y) =Xj2A mGMj I(yj 6 _y) (2.5.8)where mGMj` = b�1(N � n)�1 Z a`a`�1 Xi2Ac K[b�1(xi � u)]du:As a special example of (2.5.8), consider the kernel function U(�1; 1). As b ! 0, theweights mGMj` go to (N � n)�1 times the number of elements in the set fi 2 A c : a`�1 <xi 6 a`g: That is, the weights are equal to the proportion of nonselected units with an xvalue \close" to xj for j 2 A . Estimators (2.5.7) and (2.5.8) can be incorporated as partof a distribution function estimator. An estimator of the distribution function based onthe Nadaraya-Watson estimator (2.5.7) isbFNWCDW ( _y) = N�1hXj2A I(yj 6 _y) + (N � n) bFNWCDWr( _y)i:A similar estimator of the distribution function can be derived from the Gasser-M�ullerestimator (2.5.8).



27Consider, in what follows, the Nadaraya-Watson estimator (2.5.7). Similar resultsapply to the Gasser-M�uller estimator (2.5.8). Under (2.5.6), the conditional predictionbias for the Nadaraya-Watson estimator of Fr(�) isE� bFNWCDWr( _y)� Fr( _y) �� A N ;FxN� =Xj2A mNWj �(xj)� (N � n)�1 Xi2Ac �(xi); (2.5.9)where �(xi) = E[I(Yi 6 _y) �� xi]. Chambers, Dorfman and Wehrly suggest estimating(2.5.9) under model (2.3.1) to produce a calibrated version of estimator (2.5.7),bE� bFNWCDWr( _y)� Fr( _y) j A N ;FxN� =Xj2A mNWj Gn�h�1j [ _y � xjbn]��Xj2A mNWj I(yj 6 _y)(2.5.10)where Gn is de�ned in (2.3.4) as part of the Chambers and Dunstan estimator. Subtract-ing the estimate of the bias (2.5.10) from estimator (2.5.7) we get the bias calibratedestimator,eFNWCDWr( _y) = bFNWCDWr( _y) +Xj2A mNWj hI(yj 6 _y)�Gn�h�1j [ _y � xjbn]�i (2.5.11)Chambers, Dorfman and Wehrly maintain that in the event that model (2.3.1) is ap-proximately true eFNWCDWr should perform better than bFNWCDWr.A �nite sample model based approach in the bandwidth selector is used by Chambers,Dorfman and Wehrly. The summation in Fr(�) is already a form of smoothing, and usingcriteria that minimize the integrated square error would lead to oversmoothed results.The bandwidth b for estimator (2.5.7) is chosen to minimize an estimate of the meansquare error of prediction under model (2.3.1): V 2s +B2s , whereV 2s =Xj2A (mNWj )2Gn�h�1j [ _y � xjbn]��1�Gn�h�1j [ _y � xjbn]�	Bs =Xj2A mNWj Gn�h�1j [ _y � xjbn]��Xi2Ac Gn�h�1i [ _y � xibn]�:



28The bandwidth for estimator (2.5.11) is selected to minimize V 2s . In practice, Chambers,Dorfman and Wehrly suggest to use a grid of potential bandwidth values and choose theb that minimizes V 2s +B2s for bFNWCDWr and that minimizes V 2s for eFNWCDWr.Chambers, Dorfman and Wehrly study a total of 17 estimators in a Monte Carlo sim-ulation involving a population of 430 farms with 50 or more beef cattle. Two models,one that �ts the data poorly and one based on transformed x and y that has a better �tare used. Nonparametric regression estimators and bias calibrated estimators are com-pared to estimators (2.2.1), (2.3.4) and (2.3.13). The performance, measured in meansquare error, of the calibrated estimators is, in general, better than the correspondingnonparametric regression estimators. The best results, in terms of mean square error,are achieved by the Chambers and Dunstan estimator (2.3.4) under the better �ttingmodel.The paper by Dorfman and Hall (1993) works on the large-sample theory for severalestimators of the distribution function under simple random sampling without replace-ment. Three di�erent \schemas" are considered to describe the relationship between yand x:(1) y has a well de�ned relation to x, for instance, Yi = a+ bxi + �i; where E(�i) = 0,and all �i have a common distribution G,(2) y has an ill de�ned but smooth relationship to x of the form Yi = m(xi) + �i; with�i as above,(3) the function I(yi 6 _y) is more closely related to xi than yi. We may have, forinstance, EfI(Yi 6 _y) �� xig = H(xi):The list of estimators studied under these three schemas includes



29� Horvitz-Thompson estimator (2.2.1)� estimators (2.3.4), bFCD, and (2.3.13), bFRKMdm under schema (1)� nonparametric regression versions of bFCD and bFRKMdm under schema (2)� estimator (2.5.2) proposed by Kuo under schema (3)� design adjusted Kuo estimator, an analogue to Rao, Kovar and Mantel estimatorunder schema (3),bFKuo;da( _y) = bFHT ( _y) +N�1Xi2U bH(xi)� (n�1 �N�1)Xj2A bHj(xj)where bH(xi) =Xj2A WijI(yj 6 _y)bHj(xj) = Xk2A ;k 6=j W kjI(yk 6 _y);Wij is de�ned in (2.5.1) andW kj = K�b�1[xk � xj]�h Xi2A ;i6=j K�b�1[xi � xj]�i�1� nonparametric calibration estimator introduced by Dorfman and HallbFDH( _y) = N�1hXj2A I(yj 6 _y) +Xi2Ac Gn( _y � ba�bbxi) + CDHiCDH = Xi2A c Xj2A Wij�I(yj 6 _y)�Gn( _y � ba�bbxi)�Expressions for the asymptotic model bias and model variance of these estimatorsare computed (see Dorfman and Hall, 1993, Table 1). Dorfman and Hall observe thatalthough some estimators perform better under certain conditions, there are no clearwinners. The group of \bias-vulnerable" estimators includes Chambers and Dunstan'sestimator (2.3.4), the naive estimator (2.2.1) and the Rao, Kovar and Mantel's estimator(2.3.13). The Rao, Kovar and Mantel's estimator (2.3.13) is also called bias-vulnerablebecause it is conditionally model biased, conditional on the sample indexes.



302.6 Poststrati�ed EstimationNascimento-Silva and Skinner (1995) consider a poststrati�ed estimator of the dis-tribution function with poststrata de�ned by intervals of x. Poststrati�ed estimationis a widely used method in survey sampling. Furthermore, poststrati�ed estimationmay be more robust than model based procedures because it does not depend on aspeci�c model. Consider a partition of U into G groups U1;U2; : : : ;UG where i 2 Ug ifx[g�1] < xi 6 x[g]; x[0] = �1, x[G] = +1 and x[1] < x[2] < : : : < x[G�1] are some �xedvalues. Let A g = A \Ug; g = 1; 2; : : : ; G. Let Ng be the number of elements in Ug, andlet bNg =Pj2Ag ��1j . Then the poststrati�ed estimator of FN( _y) isbFPS( _y) = N�1 GXg=1 Ng bN�1g Xj2A g ��1j I(yj 6 _y) = N�1 GXg=1 Ng bFg( _y) (2.6.1)where bFg( _y) = bN�1g Pj2A g ��1j I(yj 6 _y). In practice, any poststrata without observa-tions are combined with non-empty adjacent strata.The poststrati�ed estimator bFPS de�ned in (2.6.1) is compared theoretically and in aMonte Carlo study with estimators bFHT , bFCD, bFRKMr, bFRKMd, bFRKMdm, bFKuo and bFKukde�ned in (2.2.1), (2.3.4), (2.3.10), (2.3.11), (2.3.13), (2.5.2) and (2.5.4) respectively. LetbF denote any of the estimators bFPS , bFHT , bFCD, bFRKMr, bFRKMd, bFRKMdm, bFKuo and bFKukmentioned above. The criteria used for the comparison are:� Is bF monotone, with lim _y!�1 bF ( _y) = 0 and lim _y!+1 bF ( _y) = 1? The three esti-mators proposed in Rao et al. (1990): bFRKMr, bFRKMd, and bFRKMdm, fail to meetthe monotonicity criterion.� Does y = x imply bF = FN? When y = x, estimator (2.6.1) is equal to thedistribution function for _y = x[g]; g = 0; 1; : : : ; G, but not for general values of _y.



31The property holds for bFCD, bFRKMr, bFRKMd and bFRKMdm. The estimators thatdo not equal the distribution function when y = x are bFHT , bFKuo and bFKuk.� Is there 
exibility in the use of auxiliary information? The poststrati�ed estima-tor bFPS only needs the Ng values to be known, that is, the number of units inthe population with values of x in certain intervals. The Chambers and Dunstanestimator can be computed when summary information about the number of ele-ments per interval of x is available, as shown in Dunstan and Chambers (1989).When more than one auxiliary variable is available, the estimators that can beextended easily to include such variables are bFPS, bFCD, bFRKMd and bFRKMdm. Theextension of bFRKMr, bFKuo and bFKuk to include additional auxiliary variables is notstraightforward.� Is the computation simple? Nascimento-Silva and Skinner adopt the conventionthat an estimator is simple to compute when the estimator can be written asbF ( _y) =Xj2A wjI(yj 6 _y)where the wj do not depend on yj or on _y. Only the estimators bFHT , bFKuo andbFPS have this property. Ease of computation may become an important issue ifwe want to compute the distribution function for several values of _y.� Automatic de�nition of the estimator. The only estimators for which no mod-els, bandwidths or scaling factors are necessary are bFHT , bFRKMr and bFRKMd.The poststrati�ed estimator (2.6.1) requires the de�nition of G and the x[g]; g =1; 2; : : : ; G � 1 values.� Bias. Asymptotic model unbiasedness for estimators bFCD and bFRKMdm is shownin Chambers and Dunstan (1986) and Rao et al. (1990) respectively. The post-strati�ed estimator is design unbiased provided Ng > 0 for all groups.



32� Variance. An approximate expression for the variance of estimator (2.6.1) isV � bFPS( _y)	 := N�2 Xi<j2U(�i�j � �ij)(ai��1i � aj��1j )2 (2.6.2)where ai = I(yi 6 _y) � Fgi( _y) and gi is the group to which unit i belongs. Notethat the variance of bFPS is zero if all of the y values in each group are either below_y or above _y, indicating that it is not possible to have a single poststrati�cationthat minimizes (2.6.2) for all values of _y. An estimator of (2.6.2) isbV � bFPS( _y)	 := N�2 Xi<j2U(�i�j � �ij)��1ij (ai��1i � aj��1j )2:A Monte Carlo study of the performance of estimators bFHT , bFCD, bFRKMr, bFRKMd,bFRKMdm, bFKuo, bFKuk and bFPS is presented in Nascimento-Silva and Skinner (1995).Two populations are used: the 338 sugar cane farms used in Chambers and Dunstan(1986) and the population of 430 beef cattle farms used in Chambers et al. (1993).The distribution function and the estimators listed are computed at eleven quantiles y�,corresponding to � = 1=12, 2=12, : : : , 11=12. The average bias, average mean squareerror, aggregated average bias for the 11 quantiles, aggregated average mean square errorfor the 11 quantiles and maximum absolute deviation between each estimator and the�nite population distribution function are computed. Simple random samples of size 30and 50 are selected. Three schema of poststrati�cation are considered:� equal number of units in each poststrata,� equal aggregate square root of x in each poststrata,� equal aggregate of x in each poststrata.The performance of the poststrati�ed estimator is not very good for samples of size 30and 50. As shown in other papers, the Chambers and Dunstan estimator outperforms the



33others in terms of aggregate mean square error. The bias component has a relatively largecontribution to the mean square error of bFCD. Nascimento-Silva and Skinner observethat if the bias does not decrease at the same rate as the variance of the Chambers andDunstan estimator, the relative contribution of the bias to the mean square error will belarger as the sample size increases. In fact, for samples of size 300 from the beef cattlefarms population, the performance of the poststrati�ed estimator is roughly the sameas the performance of the Chambers and Dunstan estimator.Fuller (1966) gives an alternative for collapsing empty poststrata with adjacent non-empty poststrata that produces unbiased estimators. Suppose that the population isdivided into two poststrata: U1 and U2. A simple random sample is selected from thepopulation. Let A g = Ug \ A , g = 1; 2. After the sample is selected, two possiblesituations are considered:� case I. Both A 1 and A 2 are non-empty.� case II. One of the A g has no elements.The poststrati�ed estimator of the population mean �y = N�1Pi2Uyi for case I isb�FPS = N�1[N1�y1 +N2�y2] (2.6.3)where Ng is the number of elements in Ug and �yg is the sample mean for A g , g = 1; 2,�yg = n�1g Xj2A g yjand ng is the number of units in A g . Estimator (2.6.3) is unbiased for �y given that caseI has occurred. If one of the strata is empty, estimator b�FPS is based on the samplemean of the non-empty strata.b�FPS = D1�y1 if A = A 1= D2�y2 if A = A 2



34where D1 and D2 are chosen such that b�FPS is conditionally unbiased under case II:P �1D1�y1 + P �2D2�y2 = �ywhere P �g is the probability that A g is non-empty given case II, and �yg = N�1g Pi2Ug yi,g = 1; 2. For b�FPS to be conditionally unbiased given case II for all �y1 and �y2, weneed to have Dg = Pg(P �g )�1where Pg = N�1Ng is the proportion of units in stratum g, g = 1; 2. Fuller notes that it isunclear under which conditions estimator (2.6.3) will perform better than the customarypoststrati�ed estimator formed by collapsing empty strata. According to Fuller, if theprocedure is generalized to more than two strata \it is very possible that the unbiasedestimator would have a smaller mean square error than the biased collapsing estimator."Note that if N1 = N2, under simple random sampling without replacement, P �1 =P �2 = 1=2. If N1 = N2, estimator (2.6.3) and the biased collapsing estimator are thesame.The extension of the procedure to more than two strata is done by repeatedly di-viding the population into groups of two. In the example presented in Fuller (1966) thepopulation is divided initially into two groups, 1 and 2. Group 1 is divided into strata11 and 12. Group 2 is divided into groups 21 and 22. Finally, group 22 is subdividedinto strata 221 and 222. The �ve resulting strata are then identi�ed as: 11, 12, 21, 221and 222. The method described in Fuller (1966) is then applied iteratively to sets of twostrata. First, the two strata with 3 digit identi�cation numbers are considered. Strata221 and 222 are then combined to reconstruct \stratum" 22. The method applied tostrata 21 and 22 gives an estimation for stratum 2, and the method applied to strata11 and 12 gives an estimation for stratum 1. At each stage we are dealing with only 2strata so that an analogue of estimator (2.6.3) can be used for unbiased estimation. Es-



35timator (2.6.3) can be changed to an estimator of the distribution function by replacingthe variable y with the function I(y 6 _y).Wey (1966) presents two estimators for the population mean �y that use the ranksof the variable x as auxiliary information. The design used is simple random samplingwith a sample of size n selected from a population of size N . In order to simplifynotation, assume that the sample is sorted by some auxiliary variable x, and that A =f1; 2; : : : ; ng. That is, the elements in the sample are labeled 1 to n, and x1 < x2 <: : : < xn. Let zj; j 2 A be the ranks in the population of elements in the sample.The �rst estimator is constructed using the x values in the sample to stratify thepopulation into n strata with boundaries de�ned by �2�1(zi�1 + zi); 2�1(zi + zi+1)� fori = 1; : : : ; n, where z0 = 1 � z1 and zn+1 = 2N + 1 � zn. The number of elementsin Stratum i is N [1]i = 2�1(zi+1 � zi�1) for i = 2; : : : ; n � 1. The number of elementsin stratum 1 is N [1]1 = 2�1(z1 + z2 � 1) and the number of elements in stratum n isN [1]n = 2�1(2N +1� zn� zn�1). Note that some of the stratum sizes may be noninteger.The sum of the stratum sizes is N . The N [1]i are random variables that depend on thezi; i = 1; : : : ; n. The pseudo-poststrati�ed estimator of �y for strata of size 1 is de�nedas b�[1]pW = n�1(N + 1)�1(n + 1)n n�1Xi=2 N [1]i yi + (N + 1)(n+ 1)�1(y1 + yn)o (2.6.4)where the weight given to observations 1 and n has the purpose of reducing the bias in(2.6.4) as an estimator of �y. Wey generalizes estimator b�[1]pW by allowing each stratumto have r sample elements. Assume n = mr and let the stratum boundaries be de�nedby �2�1(z(h�1)r+ z(h�1)r+1); 2�1(zhr+ zhr+1)�; h = 1; : : : ;m with z0 = 1� z1 and zn+1 =2N + 1 � zn. The number of elements in stratum h is then N [r]h = 2�1(zhr + zhr+1 �



36z(h�1)r � z(h�1)r+1): The pseudo-poststrati�ed estimator for strata of size r is de�ned asb�[r]pW = n�1(N + 1)�1(n+ 1)nm�1Xi=2 N [r]i �yh + r(N + 1)(n + 1)�1(�y1 + �ym)o (2.6.5)where �yh is the sample mean of the hth stratum. Wey uses the following linear modelto study the properties of b�[r]pW yi = A+Bzi + ei; (2.6.6)where the ei are uncorrelated random variables given zi with E[ei ��zi] = 0 and V [ei ��zi] =S2e . An expression for the approximate variance of estimator (2.6.5) under model (2.6.6)is given. The optimum value for r can then be determined, under model (2.6.6), byminimizing the approximate variance of b�[r]pW (Wey, 1966, page 86).An alternative unbiased estimator of �y using the ranks of x as auxiliary informationis constructed by averaging conditionally unbiased estimators. Assume that n = 2m+1for some m > 2. To construct an unbiased estimator of �y, condition on the evennumbered observations 2i; i = 1; : : : ;m. If observation 2 is given, observation 1 can beseen as a simple random sample of size 1 from the set of observations with ranks ofx in the set f1; 2; : : : ; z2 � 1g. Given observations 2 and 4, the third observation canbe seen as a simple random sample of size 1 from the set of observations with ranksin the set fz2 + 1; : : : ; z4 � 1g. Proceed similarly with the rest of the odd numberedobservations. An unbiased estimator of the mean can be constructed by weightingobservations 2i+ 1; i = 2; : : : ;m� 1 by the number of elements in the population thatlie between the two contiguous even numbered observations: (z2i+2 � z2i � 1). Theweights used for observations 1 and n are (z2 � 1) and (N � zn�1) respectively. Theestimator e�[2]W1 = N�1neTW1 + mXi=1 y2io (2.6.7)



37is conditionally unbiased for �y given observations 2; 4; : : : ; 2m, whereeTW1 = h(z2 � 1)y1 + m�1Xi=1 (z2i+2 � z2i � 1)y2i+1 + (N � zn�1)yni:Similarly, we can condition on the odd numbered observations 2i+1; i = 2; 3; : : : ;m�1 to construct another unbiased estimator of �y. The �rst and last observations are notused in the conditioning operation. Given observation 3, the �rst two sample elementscan be seen as a simple random sample of size two of the (z3� 1) elements with x < x3,that is, with ranks in the set f1; 2; : : : ; z3 � 1g. The last two observations can beviewed as a simple random sample of size 2 selected from the set of observations withranks in the set fzn�2+1; zn�2+2; : : : ; Ng. The rest of the even numbered observations2i; i = 2; 3; : : : ;m�1 are treated as samples of size 1 from the sets with (z2i+1�z2i�1�1)observations whose values of x are between x2i�1 and x2i+1 respectively. A secondunbiased estimator of �y is thene�[2]W2 = N�1neTW2 + m�1Xi=1 y2i+1o (2.6.8)whereeTW2 = h(z3 � 1)2�1(y1 + y2) + m�2Xi=2 (z2i+1 � z2i�1 � 1)y2i + (N � zn�2)2�1(yn�1 + yn)i:Wey suggests to use the mean of estimators (2.6.7) and (2.6.8) as an estimator for �y,b�[2]uW = 2�1(e�[2]W1 + e�[2]W2): (2.6.9)where the superscript [2] denotes that estimator (2.6.9) is the mean of two conditionallyunbiased estimators. Estimator (2.6.9) is design unbiased for �y.Wey generalizes estimator (2.6.9) to the case where the unbiased estimator for �yis constructed by averaging k conditionally unbiased poststrati�ed estimators, where kmay vary between 2 and n. In the extreme case of k = n, for instance, each one of the



38n unbiased estimators is constructed conditioning on just observation i; i = 1; 2; : : : ; n.Assume that n = km+ k � 1. One of the conditionally unbiased estimators is obtainedby conditioning on observations ki+ 1; i = 1; : : : ;m ase�[k]W1 = N�1neT [k]W1 + mXi=1 yki+1owhere eT [k]W1 = k�1(zk+1 � 1) kXj=1 yj + (k � 1)�1 mXi=2 (zki+1 � zki�k+1) k�1Xj=1 yki�k+1+j+ (k � 2)�1(N � zkm+1) k�2Xj=1 ykm+1+jSimilarly, a second conditionally unbiased estimator, e�[k]W2, is constructed by conditioningon observations ki; i = 1; : : : ;m. A third conditionally unbiased estimator, e�[k]W3, isconstructed by conditioning on observations ki � 1; i = 1; : : : ;m. The procedure isrepeated until each observation, except the �rst and last, have been used once and onlyonce in the conditioning set (Wey, 1966, page 62). The general unbiased estimator for�y is then constructed by averaging the e�[k]Wi asb�[k]uW = k�1 kXi=1 e�[k]Wi: (2.6.10)An expression for the approximate variance of estimator (2.6.10) under model (2.6.6) isgiven. The optimum k can then be determined by minimizing the variance of b�[k]uW withrespect to k (Wey, 1966, page 98). Estimators for the variances of b�[r]pW and b�[k]uW aregiven in Section V of Wey (1966).2.7 CommentsSome comments on the di�erent articles described in this chapter, particularly thosein Section 2.3, are possible.



39� The Chambers and Dunstan estimator (2.3.4) outperforms the others when themodel used to construct it closely describes the relation between y and x. Thisestimator does not recognize the sampling design, and performance breaks downwhen the model is incorrectly speci�ed.� Model misspeci�cation can occur for: (1) the mean function for y in terms of x, (2)the variance function of the residuals, V fh(xk)Ukg in (2.3.1), and (3) the speci�ca-tion of a common distribution function. Correct speci�cation of the variance maybe more di�cult to achieve than the correct speci�cation of the mean function.� Intensive computations seem to be unavoidable in the estimation of the distributionfunction. The Chambers and Dunstan method requires the computation of n(N �n) imputed values for the variable y as presented in (3.1.1). The n(N�n) imputedvalues for the variable y may be used to estimate the distribution function at asmany points as desired.



40
3 LOCAL-RESIDUALS ESTIMATOR3.1 IntroductionThe Chambers and Dunstan estimator (2.3.4) can be seen as a weighted average ofn + n(N � n) indicator functions. The construction of the estimator is composed ofseveral steps. First the regression coe�cient bn is computed. Then for each elementi 2 A c , byi = xibn is computed. Then n new y values are created for each i 2 A c byadding to byi each of the n sample residuals rj = yj �xjbn multiplied by h(xi)h(xj)�1 forj 2 A . Thus, the new imputed values arebyCDij = xibn + hih�1j (yj � xjbn)= byi + hih�1j rj (3.1.1)for i 2 A , j 2 A c , where hi = h(xi). Estimator (2.3.4) can be computed asbFCD( _y) = N�1hXj2A I(yj 6 _y) + Xi2Ac Xj2A n�1I(byCDij 6 _y)i: (3.1.2)The same idea of an \imputed" population is used for the local-residuals estimatordeveloped in this section. Instead of using the n residuals for each nonsampled unit i,only residuals from sampled units that are \close" to i are used. Assume that model(2.1.4) holds and that the value for an auxiliary variable, x, is available for each elementin the population. For the units in the sample both y and x are available. For simplicitywe will assume that there are no duplicate x values.



41Suppose that the sample is divided into B groups according to the sorted values ofx and that k = n=B is an integer. Each group, denoted by A ` , contains k elements ofthe sample such that x([`�1]k+1); : : : ; x(`k) 2 A ` , ` = 1; : : : ; B, where x(j) denotes the jthsample order statistic of x,x(1); : : : ; x(k)| {z }Group 1 ; x(k+1); : : : ; x(2k)| {z }Group 2 ; : : : ; x([B�1]k+1); : : : ; x(n)| {z }Group B : (3.1.3)Elements in the population are divided similarly into B bins, denoted by U`. Theboundary between bins U` and U`+1 is (x(`k) + x(`k+1))=2, ` = 1; : : : ; B � 1. For eachi 2 U, let `i be the index of the bin containing unit i. That is, for unit i, `i = ` if8>>>><>>>>: xi 6 [x(k) + x(k+1)]=2 for ` = 1(x([`�1]k) + x([`�1]k+1))=2 6 xi 6 [x(`k) + x(`k+1)]=2 for 1 < ` < B(x([B�1]k) + x([B�1]k+1))=2 6 xi for ` = B:Because we are assuming that x is a continuous variable, the inequalities that de�nethe bins are strict inequalities. Similar de�nition for populations with ties are possible,but in such cases the number of sample elements in each bin will not necessarily be thesame.The local-residuals estimator is de�ned asbFL( _y) = N�1hXj2A I(Yj 6 _y) +Xi2Ac bGL`i(h�1i [ _y � xib�])i (3.1.4)where b� = hXj2A ��1j h�2j YjxjihXj2A ��1j h�2j x2ji�1; (3.1.5)is the Horvitz-Thompson estimator of the �nite population parameter �y, where�y = hXi2Uh�2i yixiihXi2Uh�2i x2ii�1:



42When we consider the �nite population as a sample of size N from the superpopulationmodel, �y can be regarded as an estimator of the parameter � that appears in model(2.1.4). The estimator of the distribution function of U used in (3.1.4) isbGL`i(h�1i [ _y � xib�]) = Xj2A `i !ijI(h�1j [Yj � xj b�] 6 h�1i [ _y � xib�]) (3.1.6)= Xj2A `i !ijI(xib� + hih�1j [Yj � xj b�] 6 _y)with !ij = ��1j h Xj02A `i ��1j0 i�1: (3.1.7)Each of the estimators bGL`(�); ` = 1; : : : ; B; uses k observations from the sample. Theestimator Gn(�) of the distribution function of U , introduced in the Chambers andDunstan estimator (2.3.4), uses all n observations from the sample. When estimatingG(h�1i [ _y � xi�]) for each i 2 A c , estimator bGL`(�) is expected to be more robust thanestimator Gn(�) against model misspeci�cations since bGL`(�) only uses the k sampledobservations that are close to unit i.Imputed values of y can be computed as in (3.1.1),byij = xib� + hih�1j [yj � xj b�]: (3.1.8)Using byij, estimator (3.1.4) can be rewritten asbFL( _y) = N�1hXj2A I(yj 6 _y) +Xi2A c Xj2A `i !ijI(byij 6 _y)i: (3.1.9)For each i 2 A c , k new byij are imputed using the k residuals from the sample pointswith j 2 A `i . A total of k(N � n) imputed values are computed. Note that if all �j areequal, as in simple random sampling, !ij � k�1. Furthermore, if k = n, i.e., B = 1,estimators (3.1.2) and (3.1.9) are identical.



433.2 Limiting Distribution of bFL( _y)� FN ( _y) Conditioning on theSampleWe �rst study the sampling distribution of the local-residuals estimator conditionalon A N under alternative superpopulation model assumptions. More precisely, sincefrom a superpopulation perspective, both bFL( _y) and FN( _y) are random variables, wewill study the distribution of the estimation errorbFL( _y)� FN( _y); (3.2.1)for a �xed _y, where bFL( _y) is de�ned in (3.1.4) and FN( _y) is de�ned in (2.1.2). Insubsections 3.2.1 through 3.2.4 we will consider bFL( _y) and FN( _y) to be functions of therandom variables Yi; i 2 U.3.2.1 Case A: E(Yi) = xi� and V (Yi) = h(xi)2�2; � and h(xi) knownWe �rst derive the limiting distribution of the estimation error under the assumptionthat the parameters of the superpopulation model are known. Theorem 3.2.1 presents themodel mean and model variance of the estimation error bFL( _y)�FN( _y) for a �xed point_y. In Theorem 3.2.2 model consistency of bFL( _y) for FN( _y) and the limiting distributionof bFL( _y)� FN( _y) are shown.Theorem 3.2.1 Let A N be a sample of size n selected from the �nite population UN ofsize N . Assume that the sample is divided into B groups, each of size k, as described in(3.1.3). Assume the superpopulation modelYi = xi� + h(xi)Ui (3.2.2)



44for i 2 U, with h(x) known. Let hi = h(xi). The Ui are independent and identicallydistributed with E(Ui) = 0, V (Ui) = �2 and distribution function G(u). Let eFL�( _y) bethe estimator (3.1.4) with the true � used in (3.1.6). Then for a �xed point _y,(a) Estimator eFL�( _y) is model unbiased for the �nite population distribution functionFN( _y) de�ned in (2.1.2).(b) The model variance of the estimation error isV � eFL�( _y)� FN( _y) �� A N � = V �TL �� A N �+ V �TN �� A N � (3.2.3)whereV �TL �� A N � = N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j�G�min[ _ui1; _ui2]��G� _ui1�G� _ui2��and V �TN �� A N � = N�2 Xi2A c G( _ui)�1 �G( _ui)�;with !ij = ��1j Pj02A `i ��1j0 de�ned in (3.1.7) and _ui = h�1i ( _y � xi�).Proof. Part (a). The error in the estimated distribution function iseFL�( _y)� FN( _y) = N�1hXi2A c bGL`i(h�1i [ _y � xi�])�Xi2A c I(Yi 6 _y)i; (3.2.4)where bGL`i is de�ned in (3.1.6). Note that the �rst term depends only on the sampleobservations while the second term depends only on nonsampled observations. Undermodel (3.2.2), the Yi; i 2 U, are conditionally independent given A N . Let the two termsin (3.2.4) be TL = N�1Xi2Ac bGL`i (h�1i [ _y � xi�]) (3.2.5)



45and TN = N�1 Xi2A c I(Yi 6 _y); (3.2.6)where the subindex L or N denotes whether the term comes from the de�nition of eFL�or from the de�nition of FN respectively.The conditional expected value of (3.2.4) under model (3.2.2) isE� eFL�( _y)� FN( _y) �� A N � = E�TL �� A N �� E�TN �� A N �: (3.2.7)The second term in (3.2.7) isE�TN �� A N � = N�1 Xi2Ac E�I�Yi 6 _y� �� A N �= N�1 Xi2Ac E�I�Yi 6 _y��;since E�I�Yi 6 _y�� does not depend on whether unit i belongs to the sample or not.Then E�TN �� A N � = N�1Xi2A c E�I�h�1i [Yi � xi�] 6 h�1i [ _y � xi�]��= N�1Xi2A c E�I�Ui 6 _ui��= N�1Xi2A c G( _ui): (3.2.8)The �rst term in (3.2.7) isE�TL �� A N � = N�1 Xi2A c E� bGL`i(h�1i [ _y � xi�]) �� A N �= N�1 Xi2A c Xj2A `i !ijE�I�Uj 6 _ui� �� A N �= N�1 Xi2A c Xj2A `i !ijE�I�Uj 6 _ui��= N�1 Xi2A c Xj2A `i !ijG( _ui)= N�1 Xi2A c G( _ui) (3.2.9)



46since Pj2A `i !ij = 1 by construction and E�I�Uj 6 _ui�� = E�I�Ui 6 _ui�� = G( _ui) bymodel (3.2.2). Combining results (3.2.8) and (3.2.9) we have that the local-residualsestimator is conditionally unbiased for FN( _y), that is,E� eFL�( _y)� FN ( _y) �� A N � = 0; (3.2.10)which proves part (a). In the survey sampling literature this property is called modelunbiasedness.Part (b). Since TL and TN de�ned in (3.2.5) and (3.2.6) are conditionally independentgiven A N , the conditional variance of (3.2.4) under model (3.2.2) isV � eFL�( _y)� FN( _y) �� A N � = V �TL �� A N �+ V �TN �� A N � (3.2.11)which proves (3.2.3). The second variance in (3.2.11) isV �TN �� A N � = N�2V �Xi2Ac I(Yi 6 _y) �� A N 	= N�2Xi2A c V �I(Yi 6 _y)	= N�2Xi2A c V �I(Ui 6 _uig�= N�2Xi2A c G( _ui)�1 �G( _ui)�: (3.2.12)The �rst term on the right hand side of (3.2.11) isV �TL �� A N � = N�2V �Xi2Ac bGL`i�h�1i [ _y � xib�]� �� A N �= N�2V �Xi2Ac bGL`i� _ui� �� A N �= N�2V �Xi2Ac Xj2A `i !ijI�Uj 6 _ui� �� A N �= N�2V � BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�Uj 6 _ui� �� A N �= N�2 BX̀=1 Xj2A ` V � Xi2Ù�A ` !ijI�Uj 6 _ui� �� A N �;



47because under model (3.2.2) the Uj are conditionally independent. The set U` � A ` =U` \ A c contains the subindices of nonsampled elements in bin `. ThenV �TL �� A N � = N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2jCov�I�Uj 6 _ui1�; I�Uj 6 _ui2� �� A N �= N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2jCov�I�Uj 6 _ui1�; I�Uj 6 _ui2��= N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j�G�min[ _ui1; _ui2]��G� _ui1�G� _ui2��(3.2.13)By combining (3.2.13) and (3.2.12) we have the result. NTheorem 3.2.1 shows that the local-residuals estimator (3.1.4) is model unbiased forthe �nite population distribution function and has model variance given by (3.2.3). Noasymptotic assumptions are made in Theorem 3.2.1. In Theorem 3.2.2 we consider asequence of samples and �nite populations indexed by N as described in Section 2.1.2.The superpopulation model (3.2.14) assumed in Theorem 3.2.2 does not change with N .Theorem 3.2.2 Let fA N g be a sequence of samples selected from the sequence of �nitepopulations fUNg. Assume that the sample A N is divided into BN groups, each of sizekN , as described in (3.1.3). Assume the superpopulation modelYi = xi� + h(xi)Ui (3.2.14)for i 2 UN, with h(x) known. The Ui are independent and identically distributed withE(Ui) = 0, V (Ui) = �2 and distribution function G(u). Let _y be a �xed point. Lethi = h(xi) and _ui = h�1i [ _y � xi�]. AssumeA.1a The number of indices in A N , denoted by nN , is such thatnN+1 > nN ;



480 6 limN!1N�1nN = fc < 1:A.2a The number of bins and the number of sample elements per bin satisfyB�1N = O(N��)k�1N = O(N�(1��))where nN = BNkN and 0 < � < 1.A.3a There exist L1 and L2 such that the number of population elements per bin, KN`,satisfy 0 < L1kN < KN` < L2kN <1for all ` = 1; : : : ; BN , and BNX̀=1 KN` = N:A.4a There exist L�1 and L�2 such that0 < L�1k�1N < !ij < L�2k�1N <1;for i 2 A cN , j 2 A `i , where !ij = ��1j hPj02A `i ��1j0 i�1 is de�ned in (3.1.7), and��1j are the sample weights.A.5a The term n(N � nN )�1Pi2A cN G( _ui)[1�G( _ui)]o is positive for all N .A.6a The term nN�1Pj2AN V (Zj �� A N )o is positive for all N , whereV (Zj �� A N ) = Xi1;i22Ù�A ` !i1j!i2j�G�min[ _ui1; _ui2]��G� _ui1�G� _ui2��;Zj = Pi2Ù�A ` !ijI�Uj 6 _ui� for j 2 A N , ` is the bin that contains unit j, U` isthe set of indices in bin ` and A ` = A N \U`. The subindex N has been omitted inU` and A ` to simplify notation.



49Let eFL�( _y) be the estimator (3.1.4) with the true � used in (3.1.6). The subindex N hasbeen omitted in eFL�( _y) to simplify notation. Then,(a) The estimator eFL�( _y) satis�eslimN!1P��� eFL�( _y)� FN( _y)�� > � �� A N � = 0for all � > 0, where FN( _y) is de�ned in (2.1.2).(b) The sequence nV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)oconverges in distribution to a N(0; 1) random variable given A N , where V � eFL�( _y)�FN( _y) �� A N � is given in Theorem 3.2.1 for a population of size N .Proof. Part (a). By Theorem 3.2.1 we have thatEh eFL�( _y)� FN ( _y) �� A N i = 0:Then, to prove model consistency of eFL�( _y) � FN ( _y) we need to show that the modelvariance of eFL�( _y) � FN ( _y) given in (3.2.3) converges to zero as N ! 1. The twovariances that appear in (3.2.3), V hTL �� A N i and V hTN �� A N i, are given in (3.2.13) and(3.2.12) respectively. The second component of (3.2.3) isV hTN �� A N i = N�2Xi2A c G( _ui)�1 �G( _ui)�6 N�2Xi2A c 4�1 = N�2(N � n)4�1 = O(N�1); (3.2.15)since G( _ui)�1�G( _ui)� 6 4�1 for all i 2 A c and the number of terms in Pi2A c is N � n.The �rst term in (3.2.3), given in (3.2.13), isV hTL �� A N i = N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j�G�min[ _ui1; _ui2]��G� _ui1�G� _ui2��:



50The factors G�min[ _ui1; _ui2]��G� _ui1�G� _ui2� are the covariances between two indicatorfunctions, I�Uj 6 _ui1� and I�Uj 6 _ui2�, then,���G�min[ _ui1; _ui2]��G� _ui1�G� _ui2���� 6 4�1:The model variance of TL is then,V hTL �� A N i = N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2jhG�min[ _ui1; _ui2]��G� _ui1�G� _ui2�i= ���N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2jhG�min[ _ui1; _ui2]��G� _ui1�G� _ui2�i���6 N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j���hG�min[ _ui1; _ui2]��G� _ui1�G� _ui2�i���6 N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j4�1= 4�1N�2 BX̀=1 Xj2A ` � Xi2Ù�A ` !ij�2 (3.2.16)The sum �Pi2Ù�A ` !ij� is O(1) since by A.4a the !ij are O(k�1N ) and the number ofsummands is O(kN ) by A.3a. Since PB̀=1Pj2A ` = Pj2A has n terms, the order of(3.2.16) is then O(N�2n) = O(N�1). Then,V hTL �� A N i = O(N�1) (3.2.17)Then, by (3.2.17) and (3.2.15),V h eFL�( _y)� FN( _y) �� A N i = O(N�1);and limN!1V h eFL�( _y)� FN( _y) �� A N i = 0;which proves the model consistency of eFL�( _y)� FN( _y) stated in part (a).



51Part (b). Conditioning on A N , TL and TN are independent. The term TN is thesum of N � nN independent random variables multiplied by N�1. Assumption A.5ais su�cient for the Lyapounov condition for the sum Pi2AcN I(Ui 6 _ui) because allmoments exist for the indicator functions. It follows thatnV hTL �� A N io�1=2nTL � EhTL �� A N io == nN�2 Xi2AcN G( _ui)[1�G( _ui)]o�1=2nN�1 Xi2A cN �I(Ui 6 _ui)�G( _ui)�o= n Xi2AcN G( _ui)[1�G( _ui)]o�1=2n Xi2A cN �I(Ui 6 _ui)�G( _ui)�oconverges in distribution to a standard normal as N !1. Analogously, TL is the sumof n independent random variables multiplied by N�1. The random variable TL de�nedin (3.2.5) can be written asTL = N�1 Xi2A c bGL`i(h�1i [ _y � xi�])= N�1 Xi2A c Xj2A `i !ijI�Uj 6 _ui�= N�1 BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�Uj 6 _ui�= N�1 BX̀=1 Xj2A ` Zj= N�1 Xj2AN Zj ;where the Zj = Pi2Ù�A ` !ijI�Uj 6 _ui� are de�ned in A.6a for j 2 A N . Given A N , theZj are independent random variables withE(Zj �� A N ) = Xi2Ù�A ` !ijG( _ui)and V (Zj �� A N ) = Xi1;i22Ù�A ` !i1j!i2j�G�min[ _ui1; _ui2]��G� _ui1�G� _ui2��:



52The variables Zj are a linear combination of indicator functions. Condition A.6a issu�cient for the Lyapounov condition for the sum Pj2AN Zj because all moments existfor the ZJ . It follows thatnV hTN �� A N io�1=2nTN �EhTN �� A N io == nXj2A V hZJ �� A N io�1=2nXj2A Zj �Xj2A EhZj �� A N io; (3.2.18)converges in distribution to a standard normal as N !1. Finally, since TL and TN areconditionally independent given A N , andeFL�( _y)� FN( _y) = TL � TN ;the sequence of random variablesnV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)oconverges in distribution to a N(0; 1) given A N as N !1. N3.2.2 Case B: E(Yi) = xi� and V (Yi) = q(xi)2�2; � knownChambers and Dunstan (1986) showed that estimator (2.3.4) is no longer modelunbiased when the variance function of Y given x is misspeci�ed. If the conditionalvariance of Y given x is not the same function speci�ed in the construction of estimator(2.3.4), bFCD( _y) � FN ( _y) is still asymptotically normal, but with mean di�erent fromzero (see Chambers and Dunstan, 1986, Section 3.2). In practice, the variance functionof Y given x may be more di�cult to specify correctly than the mean function of Ygiven x. Thus, it is important to study the sampling distribution of bFL( _y) � FN( _y)under misspeci�cation of the variance function. Theorem 3.2.3 contains some results forthe misspeci�ed case. The subindex N is often omitted in the discussion to simplifynotation.



53Theorem 3.2.3 Let fA N g be a sequence of samples selected from the sequence of �nitepopulations fUNg. Assume that the sample A N is divided into BN groups, each of sizekN , as described in (3.1.3). Assume the superpopulation modelYi = xi� + q(xi)Ui (3.2.19)for i 2 UN, with q(x) 6= h(x), where h(x) is the function used in constructing estimator(3.1.4). Let hi = h(xi) and qi = q(xi). The Ui = q�1i [Yi � xi�] are independent andidentically distributed with E(Ui) = 0, V (Ui) = �2 and distribution function G(u). Thereexists an mh such that 0 < mh < h(xi) <1 for i 2 UN. There exists an Mx such thatjxij < Mx for i 2 UN. Let _y be a �xed point. Let _qi = q�1i [ _y�xi�]. Assume A.1a throughA.4a from Theorem 3.2.2. Also assumeA.5b The term n(N � nN )�1Pi2AcN G( _qi)[1�G( _qi)]o is positive for all N.A.6b The term nN�1Pj2AN V (Z�j �� A N )o is positive for all N , whereV (Z�j �� A N ) = Xi1;i22Ù�A ` !i1j!i2j�G�min[ _q�i1j; _q�i2j]��G� _q�i1j�G� _q�i2j��;Z�j =Pi2Ù�A ` !ijI�Uj 6 _q�ij�; j 2 A N , _q�ij = _qi + h�1i (q�1j hj � q�1i hi)[ _y � xi�]; ` isthe bin that contains unit j, U` is the set of indices in bin ` and A ` = A N \U`.A.7b The distribution function G(u) is di�erentiable and there exists an Mg such thatj@G(u)=@uj < Mg for all u.A.8b The functions q(�) and h(�) are di�erentiable and there exists an _Mqh such thatj@[q(x)�1h(x)]=@xj < _Mqh for all x.A.9b The max`(b`) = O(B�1N ), where b` is the length of bin `.Let eFL�( _y) be the estimator (3.1.4) with the true � used in (3.1.6). Then,



54(a) The estimator eFL�( _y) satis�eslimN!1P��� eFL�( _y)� FN( _y)�� > � �� A N � = 0for all � > 0, where FN( _y) is de�ned in (2.1.2).(b) If the value of � in A.2a is greater than 0:5, then the sequencenV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)o (3.2.20)converges in distribution to a N(0; 1) random variable, whereV � eFL�( _y)� FN( _y) �� A N � == N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j�G�min[ _q�i1j ; _q�i2j ]��G� _q�i1j�G� _q�i2j��++N�2 Xi2AcN G( _qi)[1�G( _qi)]:Proof. Part (a). Let eFL�( _y)� FN( _y) = TL � TN ; (3.2.21)where TL and TN are de�ned in (3.2.5) and (3.2.6) respectively. Under model (3.2.19),E�I(Yi 6 _y)� = E�I�q�1i [Yi � xi�] 6 q�1i [ _y � xi�]�	= E�I�Ui 6 _qi�	= G� _qi� (3.2.22)



55where _qi = q�1i [ _y� xi�]. The summands in TL involve I�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]�.All of the following inequalities are equivalent,h�1j [Yj � xj�] 6 h�1i [ _y � xi�]q�1j [Yj � xj�] 6 q�1j hjh�1i [ _y � xi�]Uj 6 q�1i [ _y � xi�] + (q�1j hjh�1i � q�1i )[ _y � xi�]Uj 6 _qi + h�1i (q�1j hj � q�1i hi)[ _y � xi�]Uj 6 _qi + _�ij; (3.2.23)where _�ij = h�1i (q�1j hj � q�1i hi)[ _y � xi�]: (3.2.24)Then, under model (3.2.19),E�I�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]�	 = E�I�Uj 6 _qi + _�ij�	= G� _qi + _�ij�: (3.2.25)Using results (3.2.22) and (3.2.25) we can computeE[TL �� A N ] = N�1 Xi2Ac Xj2A `i !ijG� _qi + _�ij�; (3.2.26)and E[TN �� A N ] = N�1 Xi2A c G� _qi�= N�1 Xi2A c Xj2A `i wijG� _qi�; (3.2.27)since Pj2A `i wij = 1 for all i. ThenE� eFL�( _y)� FN( _y) �� A N � = N�1Xi2A c Xj2A `i !ij�G� _qi + _�ij��G� _qi�	; (3.2.28)



56which will in general be di�erent from zero.We study the magnitude of the model bias of eFL�( _y) as an estimator of FN ( _y). Bythe mean value theorem and A.7b,���G� _qi + _�ij��G� _qi���� 6 j _�ijjMg:Then, ���E� eFL�( _y)� FN( _y) �� A N ���� = ���N�1Xi2A c Xj2A `i !ij�G� _qi + _�ij��G� _qi�	���6 N�1Xi2Ac Xj2A `i !ij����G� _qi + _�ij��G� _qi�	���6 N�1Xi2Ac Xj2A `i !ij ��� _�ij���Mg: (3.2.29)The quantities _�ij in (3.2.29) are_�ij = h�1i (q�1j hj � q�1i hi)[ _y � xi�]as de�ned in (3.2.24). Under model (3.2.19),h�1i = h(xi)�1 < m�1h = O(1) (3.2.30)for all i 2 UN. By A.8b and applying the mean value theorem,���q�1j hj � q�1i hi��� < ���xi � xj��� _Mqh: (3.2.31)If the units i and j of (3.2.31) belong to the same bin, then���xi � xj��� _Mqh 6 � maxl=1;::: ;BN b`� _Mqh = O(B�1N ) (3.2.32)by A.9b. Finally, _y � xi� = O(1) (3.2.33)



57because _y and � are �xed, and jxij < Mx under model (3.2.19). Combining (3.2.30),(3.2.32) and (3.2.33) we have that _�ij = O(B�1N ): (3.2.34)Then, since Pj2A `i !ij = 1,���E� eFL�( _y)� FN( _y) �� A N ���� 6 N�1Xi2A c Xj2A `i !ij ��� _�ij���Mg6 N�1Xi2A c Xj2A `i !ijO(B�1N ) = O(B�1N ) (3.2.35)Then, by A.2a, the model bias of eFL�( _y) as an estimator of FN( _y) decreases at a rateN��. Then, under model (3.2.19), the local-residuals estimator (3.1.4) is asymptoticallymodel unbiased. Note that assumption A.9b is essential in proving (3.2.35). Asymptoticmodel unbiasedness of Chambers and Dunstan estimator (2.3.4) does not hold when thevariance function of Y given x is misspeci�ed since B = 1 is used in constructing bFCD( _y).With B = 1 the model bias in bFCD( _y) as an estimator of FN( _y) does not converge tozero as N !1.The model variance of eFL�( _y)� FN( _y) isV � eFL�( _y)� FN( _y) �� A N � = V �TL �� A N �+ V �TN �� A N � (3.2.36)because the Yi; i 2 UN are independent given A N . Under model (3.2.19), the indicatorfunctions I�Yi 6 _y� that appear in TN haveV hI�Yi 6 _y�i = V hI�q�1i [Yi � xi�] 6 q�1i [ _y � xi�]�i= V hI�UI 6 _qi�i= G( _qi)[1�G( _qi)]



58Then, V �TN �� A N� = V �N�1 Xi2AcN I(Yi 6 _y) �� A N�= N�2 Xi2AcN V �I(Yi 6 _y) �� A N�= N�2 Xi2AcN G( _qi)[1�G( _qi)]: (3.2.37)By (3.2.23) we have that,V �TL �� A N� = V �N�1 BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]� �� A N�= V �N�1 BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�Uj 6 _qi + _�ij� �� A N�= V �N�1 BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�Uj 6 _q�ij� �� A N�;where _q�ij = _qi + _�ij is de�ned in A.6b. Then, since under model (3.2.19) the Uj areindependent,V �TL �� A N � = V �N�1 BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�Uj 6 _q�ij� �� A N�= N�2 BX̀=1 Xj2A ` V � Xi2Ù�A ` !ijI�Uj 6 _q�ij� �� A N�= N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2jCov�I�Uj 6 _q�i1j�; I�Uj 6 _q�i2j� �� A N �= N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j�G�min[ _q�i1j; _q�i2j]��G� _q�i1j�G� _q�i2j��:(3.2.38)To study the asymptotic properties of (3.2.37) and (3.2.38), recall that the variancesG( _qi)[1�G( _qi)] that appear in (3.2.37) are bounded byG( _qi)[1�G( _qi)] 6 0:25



59and that the covariances G�min[ _q�i1j; _q�i2j]�� G� _q�i1j�G� _q�i2j� that appear in (3.2.38) arebounded, in absolute value, by��G�min[ _q�i1j; _q�i2j]��G� _q�i1j�G� _q�i2j��� 6 0:25:Then, V �TN �� A N� 6 4�1N�1 = O(N�1) (3.2.39)and V �TL �� A N � 6 4�1N�2 BX̀=1 Xj2A ` � Xi2Ù�A ` !ij�2as in (3.2.16). Then, by the same argument that is used in (3.2.17),V �TL �� A N� = O(N�1): (3.2.40)Combining (3.2.40) and (3.2.39) we have thatV n eFL�( _y)� FN( _y) �� A No = O(N�1): (3.2.41)By result (3.2.35), eFL�( _y) is asymptotically model unbiased for FN( _y), and, by (3.2.41),the model variance of eFL�( _y)�FN( _y) converges to zero as N !1. Thus, we have thatthe local-residuals estimator is model consistent for the �nite population distributionfunction under model (3.2.19).Part (b). We will use an argument similar to the one used in proving part (b) ofTheorem 3.2.2. The terms TL and TN that appear in (3.2.21) are independent given A N .By assumption A.5b,nV (TN �� A N )o�1=2nTN �E(TN �� A N )o == nN�2 Xi2A cN G( _ui)[1�G( _ui)]o�1=2nN�1 Xi2A cN �I(Ui 6 _ui)�G( _ui)�o= n Xi2AcN G( _ui)[1�G( _ui)]o�1=2n Xi2A cN �I(Ui 6 _ui)�G( _ui)�o (3.2.42)



60converges in distribution to a standard normal. The term TL can be written asTL = N�1 Xi2A cN Xj2A `i !ijI�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]�= N�1 BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�Uj 6 _q�ij�by (3.2.23), where _q�ij = _qi + _�ij is de�ned in A.6b. Using the Z�j de�ned in A.6b,Z�j =Pi2Ù�A ` !ijI�Uj 6 _q�ij�; j 2 A N , we have thatTL = N�1 BX̀=1 Xj2A ` Z�j= N�1 Xj2AN Z�j :Then, by A.6b,nV (TL �� A N )o�1=2nTL � E(TL �� A N )o == nN�2 Xj2AN V (Z�j �� A N )o�1=2nN�1 Xj2AN Z�j �N�1E(Z�j �� A N )o= n Xj2AN V (Z�j �� A N )o�1=2n Xj2AN Z�j � E(Z�j �� A N )oconverges in distribution to a standard normal. It follows thatnV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� E� eFL�( _y) �� A N �o (3.2.43)converges in law to a N(0; 1). To �nd the limiting distribution ofnV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)owe consider the fact that the model expectation of eFL�( _y)�FN ( _y) is O(B�1N ), while themodel variance is O(N�1). Since by assumption � > 0:5,EhnV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)o �� A N i = O(N1=2��)= o(1): (3.2.44)



61Therefore, we can replace E� eFL�( _y) �� A N � in (3.2.43) with FN( _y) to obtain the limitingdistribution of (3.2.20). N3.2.3 Case C: Yi � GY ( _y;xi); � knownIn Section 3.2.2, we proved that the local-residuals estimator is robust against mis-speci�cation of the variance function. In this section we study the case when both meanand variance of Y are misspeci�ed. The superpopulation model that describes the rela-tion between Y and x is such that E[Yi ��xi] and V (Yi ��xi) are not restricted to be xi� andh(xi)2�2 respectively. The residuals �V (Yi ��xi)��1=2�Yi�E(Yi ��xi)� are independent, butthe residuals are no longer restricted to be identically distributed. The superpopulationmodel (3.2.45) in Theorem 3.2.4 is speci�ed in terms of the distribution of Y given x.Theorem 3.2.4 Let fA N g be a sequence of samples selected from the sequence of �nitepopulations fUNg. Assume that the sample A N is divided into BN groups, each ofsize kN , as described in (3.1.3). Assume a superpopulation model where the Yi areindependent and P (Yi 6 y �� xi) = GY (y;xi) (3.2.45)for i 2 UN. Let hi = h(xi), where h(�) is the function used in constructing estimator(3.1.4). Assume that there exists an mh such that 0 < mh 6 h(xi) <1 for i 2 UN. Let_y be a �xed point. Assume A.1a through A.4a from Theorem 3.2.2 andA.5c For all N , n(N � nN )�1Pi2AcN GY ( _y;xi)[1�GY ( _y;xi)]o is positive.A.6c For all N , nN�1Pj2AN V ( �Zj �� A N )o is positive, whereV ( �Zj ��A N ) = Xi1;i22Ù�A ` !i1j!i2j�GY �min[�yi1j; �yi2j ];xj��GY ��yi1j;xj�GY ��yi2j;xj��;



62�Zj = Xi2Ù�A ` !ijI�Yj 6 �yij�; j 2 A N ;�yij = _y + hj(h�1i � h�1j ) _y + hj(h�1j xj � h�1i xi)�;` is the bin that contains unit j, U` is the set of indices in bin ` and A ` = A N \U`.A.7c The distribution function GY (y;x) is di�erentiable in y and x, and there existsan _Mgg such that j@GY (y;x)=@yj < _Mgg and j@GY (y;x)=@xj < _Mgg for all y andx.A.8c The positive function h(x) is di�erentiable and there exists an _Mhx such thatjhj(h�1i � h�1j ) _y + hj(h�1j xj � h�1i xi)�j 6 jxi � xjj _Mhxfor all x.A.9c The max`(b`) = O(B�1N ), where b` is the length of bin `.Let eFL�( _y) be the estimator (3.1.4) with the true � used in (3.1.6). Then,(a) The estimator eFL�( _y) satis�eslimN!1P��� eFL�( _y)� FN( _y)�� > � �� A N � = 0for all � > 0, where FN( _y) is de�ned in (2.1.2).(b) If the value of � in A.2a is greater than 0.5, then the sequencenV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)o (3.2.46)converges in distribution to a N(0; 1) random variable, whereV � eFL�( _y)� FN( _y) �� A N � = N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j �� �GY �min[�yi1j ; �yi2j];xj��GY ��yi1j;xj�GY ��yi2j ;xj��++N�2 Xi2AcN GY ( _y;xi)[1�GY ( _y;xi)]:



63Proof. Part (a). Let eFL�( _y)� FN( _y) = TL � TN ; (3.2.47)where TL and TN are de�ned in (3.2.5) and (3.2.6) respectively. We will compute theexpected value under model (3.2.45) of the indicator functions I�h�1j [Yj�xj�] 6 h�1i [ _y�xi�]� and I�Yi 6 _y� that appear in the de�nitions of TL and TN respectively. Thefollowing inequalities are equivalenth�1j [Yj � xj�] 6 h�1i [ _y � xi�]Yj 6 xj� + hjh�1i [ _y � xi�]Yj 6 _y + hj(h�1i � h�1j ) _y + hj(h�1j xj � h�1i xi)�Yj 6 _y + ��ij (3.2.48)Yj 6 �yij; (3.2.49)where ��ij in (3.2.48) is��ij = hj(h�1i � h�1j ) _y + hj(h�1j xj � h�1i xi)� (3.2.50)and �yij = _y + ��ij is de�ned in A.6c. Then, under model (3.2.45) we have thatE�I�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]�	 = E�I�Yj 6 _y + ��ij�	= GY ( _y + ��ij;xj) (3.2.51)and E�I(Yi 6 _y)� = GY ( _y;xi): (3.2.52)Using (3.2.51) and (3.2.52) we have thatE[TL �� A N ] = N�1 Xi2A cN Xj2A `i !ijGY � _y + ��ij;xj�; (3.2.53)



64and E[TN �� A N ] = N�1 Xi2A cN GY � _y;xi�= N�1 Xi2A cN Xj2A `i !ijGY � _y;xi�; (3.2.54)because Pj2A `i !ij = 1 for all i 2 A cN . Then, the model bias of eFL�( _y) as an estimatorof FN( _y) isE� eFL�( _y)� FN( _y) �� A N � = N�1 Xi2Ac Xj2A `i !ij�GY ( _y + ��ij;xj)�GY ( _y;xi)	(3.2.55)which in general will be di�erent from zero. The di�erence between distribution functionsin (3.2.55) can be written asGY ( _y + ��ij;xj)�GY ( _y;xi) = �GY ( _y + ��ij;xj)�GY ( _y;xj)�+ �GY ( _y;xj)�GY ( _y;xi)�:Then, by the triangular inequality,���GY ( _y + ��ij;xj)�GY ( _y;xi)��� 6 ���GY ( _y + ��ij;xj)�GY ( _y;xj)���+ ���GY ( _y;xj)�GY ( _y;xi)���:(3.2.56)Applying mean value theorem and A.7c on the right hand side of (3.2.56) we have that���GY ( _y + ��ij;xj)�GY ( _y;xi)��� 6 �j��ijj+ jxj � xij� _Mgg6 jxj � xij( _Mhx + 1) _Mggby A.8c. Since units i and j are in the same bin, jxj � xij 6 max`(b`), then���GY ( _y + ��ij;xj)�GY ( _y;xi)��� 6 max` (b`)( _Mhx + 1) _Mgg= O(B�1N ) (3.2.57)



65by A.9c. The model bias of the local-residuals estimator is then���E� eFL�( _y)� FN( _y) �� A N ���� 6 N�1Xi2A c Xj2A `i !ij���GY ( _y + ��ij;xj)�GY ( _y;xi)���= N�1Xi2Ac Xj2A `i !ijO(B�1N )= O(B�1N ): (3.2.58)Since by A.2a we have that B !1 as N !1, we have that eFL�( _y) is asymptoticallymodel unbiased for FN( _y). Note that (3.2.58) indicates that the model unbiasednessholds even when both the mean function and the variance function of Y given x aremisspeci�ed.The variance of eFL�( _y)� FN( _y) given A N isV � eFL�( _y)� FN( _y) �� A N � = V �TL �� A N �+ V �TN �� A N � (3.2.59)because the Yi; i 2 UN are independent under model (3.2.45). The model variance of TNis V �TN �� A N � = V �N�1 Xi2AcN I(Yi 6 _y) �� A N �= N�2 Xi2A cN GY ( _y;xi)[1�GY ( _y;xi)] (3.2.60)Using (3.2.49), the model variance of TL isV �TL �� A N� = V �N�1 BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]� �� A N�= V �N�1 BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�Yj 6 �yij� �� A N�;



66where �yij is de�ned in A.6c. Then, since under model (3.2.45) the Yj are independent,V �TL �� A N � = V �N�1 BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�Yj 6 �yij� �� A N�= N�2 BX̀=1 Xj2A ` V � Xi2Ù�A ` !ijI�Yj 6 �yij� �� A N�= N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2jCov�I�Yj 6 �yi1j�; I�Yj 6 �yi2j� �� A N �= N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j �� �GY �min[�yi1j; �yi2j];xj��GY ��yi1j;xj�GY ��yi2j;xj��:(3.2.61)As in Theorem 3.2.3, to study the asymptotic properties of (3.2.60) and (3.2.61),recall that the variances GY ( _y;xi)[1�GY ( _y;xi)] that appear in (3.2.60) are bounded byGY ( _y;xi)[1�GY ( _y;xi)] 6 4�1and that the covariances GY �min[�yi1j; �yi2j ];xj� � GY ��yi1j;xj�GY ��yi2j ;xj� that appearin (3.2.61) are bounded, in absolute value, by��GY �min[�yi1j; �yi2j ];xj��GY ��yi1j;xj�GY ��yi2j;xj��� 6 4�1:Then, V �TN �� A N� 6 4�1N�1 = O(N�1) (3.2.62)and V �TL �� A N � 6 4�1N�2 BX̀=1 Xj2A ` � Xi2Ù�A ` !ij�2as in (3.2.16). Then, by the same argument that is used in (3.2.17),V �TL �� A N� = O(N�1): (3.2.63)



67Combining (3.2.63) and (3.2.62) we have thatV n eFL�( _y)� FN( _y) �� A No = O(N�1): (3.2.64)By result (3.2.58), eFL�( _y) is asymptotically model unbiased for FN( _y), and, by (3.2.64),the model variance of eFL�( _y)�FN( _y) converges to zero as N !1. Then, we have thatthe local-residuals estimator is model consistent for the �nite population distributionfunction under model (3.2.45).Part (b). We will use an argument similar to the one used in proving parts (b) ofTheorem 3.2.2 and Theorem 3.2.3. The terms TL and TN that appear in (3.2.47) areindependent given A N . By assumption A.5c,nV (TN �� A N )o�1=2nTN �E(TN �� A N )o == nN�2 Xi2A cN GY ( _y;xi)[1�GY ( _y;xi)]o�1=2 �� nN�1 Xi2A cN �I(Yi 6 _y;xi)�GY ( _y;xi)�o= n Xi2AcN GY ( _y;xi)[1�GY ( _y;xi)]o�1=2 �� n Xi2AcN �I(Yi 6 _y;xi)�GY ( _y;xi)�o (3.2.65)converges in distribution to a standard normal. The term TL can be written asTL = N�1 Xi2A cN Xj2A `i !ijI�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]�= N�1 BX̀=1 Xj2A ` Xi2Ù�A ` !ijI�Yj 6 �yij�



68by (3.2.49). Using the �Zj de�ned in A.6c, �Zj = Pi2Ù�A ` !ijI�Yj 6 �yij�; j 2 A N , wehave that TL = N�1 BX̀=1 Xj2A ` �Zj= N�1 Xj2AN �Zj :Then, by A.6c,nV (TL �� A N )o�1=2nTL � E(TL �� A N )o == nN�2 Xj2AN V ( �Zj �� A N )o�1=2nN�1 Xj2AN �Zj �N�1E( �Zj �� A N )o= n Xj2AN V ( �Zj �� A N )o�1=2n Xj2AN �Zj � E( �Zj �� A N )oconverges in distribution to a standard normal.To �nd the limiting distribution ofnV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)orecall that the model expectation of eFL�( _y)�FN( _y) is O(B�1N ), while the model varianceis O(N�1). By A.2a, BN = O(N�), and by the assumption that � > 0:5,EhnV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)o �� A N i = O(N1=2��)= o(1); (3.2.66)and the distribution result follows. NPart (a) of Theorem 3.2.4 shows that the local-residuals estimator of the �nite pop-ulation distribution function is model consistent even in the case when both the condi-tional mean and the conditional variance of Y given x are misspeci�ed. The assumptionthat the maximum of the bin lengths goes to zero as N increases is crucial for the local-residuals estimator to be model consistent under misspeci�cation of the conditional mean



69and the conditional variance of Y given x. We need � > 0:5 for the bias in the sum togo to zero faster than the standard error as N !1. Although, � > 0:5 is not necessaryfor the model consistency of eFL�( _y) � FN( _y). However, if � is close to 0:5 the rate ofdecrease in the bias is small.We will construct a model consistent estimator of the variance of bFL( _y) � FN( _y)based on the local-residuals estimator. LeteGY (�y;xi) = Xj2A `i !ijI�eYij 6 �y�; (3.2.67)be the local estimator of the conditional distribution function of Y for x = xi, evaluatedat the point �y, where eYij = xi� + hih�1j [Yj � xj�]: (3.2.68)In Corollary 3.2.1 we demonstrate that eGY (�y;xi) is model consistent forGY (�y;xi) de�nedin (3.2.45). We use eGY (�y;xi) to construct model consistent estimators of the componentsof V � bFL( _y)� FN( _y) �� A N �, where the components areV �TL �� A N� = N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j �� �GY �min[�yi1j ; �yi2j ];xj��GY ��yi1j;xj�GY ��yi2j;xj��(3.2.69)de�ned in (3.2.61) andV �TN �� A N � = N�2 Xi2A cN GY ( _y;xi)[1�GY ( _y;xi)] (3.2.70)de�ned in (3.2.60).Corollary 3.2.1 Assume A.1a through A.4a from Theorem 3.2.2. Assume that thevalue of � in A.2a satis�es 0 < � < 1. Let the model 3.2.45 hold, and assume A.5cthrough A.9c from Theorem 3.2.4. Then,



70(a) For any �y and xi with i 2 UN, estimator eGY (�y;xi) satis�eslimN!1E���� eGY (�y;xi)�GY (�y;xi)��� �� A N� = 0;where eGY (�y;xi) is de�ned in (3.2.67) and GY (�y;xi) is de�ned in (3.2.45).(b) The estimatoreV �TL �� A N� = N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j �� � eGY �min[�yi1j; �yi2j];xj�� eGY ��yi1j;xj� eGY ��yi2j;xj��(3.2.71)of V (TL �� A N ) given by (3.2.69), satis�eslimN!1E�N���eV �TL �� A N �� V �TL �� A N ���� �� A N� = 0for any � > 0.(c) The estimator eV �TN �� A N � = N�2 Xi2A cN eGY ( _y;xi)[1� eGY ( _y;xi)] (3.2.72)of V (TN �� A N ) given by (3.2.60), satis�eslimN!1E�N���eV �TN �� A N �� V �TN �� A N ���� �� A N� = 0for any � > 0.Proof. Part (a). By (3.2.48), (3.2.50) and (3.2.68), all of the following inequalitiesare equivalent, eYij 6 �yxi� + hih�1j [Yj � xj�] 6 �yh�1j [Yj � xj�] 6 h�1i [�y � xi�]Yj 6 �y + ��ij(�):



71Thus, the estimator (3.2.67) can be written aseGY (�y;xi) = Xj2A `i !ijI�eYij 6 �y�= Xj2A `i !ijI�Yj 6 �y + ��ij(�)�:Under model (3.2.45), the conditional expectation of eGY (�y;xi) is,E� eGY (�y;xi) �� A N� = E� Xj2A `i !ijI�Yj 6 �y + ��ij(�)� �� A N�= Xj2A `i !ijGY ��y + ��ij(�);xj�:By (3.2.57) we have that hGY ��y+��ij(�);xj��GY (�y;xi)i is O(B�1N ) for all ` = 1; : : : ; BN ,i 2 U` � A ` and j 2 A ` . Because the O(B�1N ) upper bound is given for the maximumdi�erence between xi and xj when i and j are in the same bin, by (3.2.57) we havemax`=1;::: ;BN n maxi2Ù�A ` ; j2A ` GY (�y + ��ij;xj)�GY (�y;xi)o = O(B�1N ): (3.2.73)Then, E� eGY (�y;xi)�GY (�y;xi) �� A N� = Xj2A `i !ijhGY ��y + ��ij(�);xj��GY (�y;xi)i= Xj2A `i !ijO(B�1N ) = O(B�1N ): (3.2.74)Furthermore, by A.4a, we have0 < L�1k�1N < !ij < L�2k�1N <1;



72where !ij = ��1j hPj02A `i ��1j0 i�1. Therefore, it follows that !2ij = O(k�2N ) for all i 2 UN,j 2 A N . Then,V � eGY (�y;xi)�GY (�y;xi) �� A N� = V � eGY (�y;xi) �� A N�= V � Xj2A `i !ijI�Yj 6 �y + ��ij(�)� �� A N�= Xj2A `i !2ijV �I�Yj 6 �y + ��ij(�)� �� A N�= Xj2A `i !2ijGY (�y + ��ij(�);xj)�1 �GY (�y + ��ij(�);xj)�6 Xj2A `i O(k�2N )4�1 = O(k�1N ): (3.2.75)Then, by Jensen's inequality, (3.2.74) and (3.2.75),nE���� eGY (�y;xi)�GY (�y;xi)��� �� A N�o2 6 E���� eGY (�y;xi)�GY (�y;xi)���2 �� A N�= hE� eGY (�y;xi)�GY (�y;xi) �� A N�i2+ V � eGY (�y;xi)�GY (�y;xi) �� A N�= O(B�2N ) +O(k�1N ); (3.2.76)hence, E���� eGY (�y;xi)�GY (�y;xi)��� �� A N� = O�max(B�1N ; k�1=2N )�: (3.2.77)Because, by assumption 0 < � < 1 for the value of � in A.2a, BN ! 1 and kN ! 1as N !1, E���� eGY (�y;xi)�GY (�y;xi)��� �� A N� = o(1); (3.2.78)and the result follows.Part (b). Results (3.2.74) and (3.2.75) are independent of �y and of the indexes i,and `. The order of (3.2.74) depends on assumption A.9c, that the max`(b`) = O(B�1N ),



73which is independent of `, �y and xi. The order of (3.2.75) depends on assumption A.4aabout the order of !ij as N !1, which is also independent of `, �y and xi. Because of(3.2.78), we have thatE����� eGY �min[�yi1j; �yi2j];xj�� eGY ��yi1j;xj� eGY ��yi2j;xj��� �GY �min[�yi1j; �yi2j];xj��GY ��yi1j;xj�GY ��yi2j;xj����� �� A N� = o(1);(3.2.79)for any units i1, i2 and j that belong to the same bin `. Then,E�N�eV �TL �� A N ��V �TL �� A N �� �� A N� == E����N�1 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j �� n� eGY �min[�yi1j; �yi2j];xj�� eGY ��yi1j ;xj� eGY ��yi2j;xj��� �GY �min[�yi1j; �yi2j];xj��GY ��yi1j ;xj�GY ��yi2j;xj��o��� �� A N�6 N�1 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j �� E����� eGY �min[�yi1j; �yi2j ];xj�� eGY ��yi1j ;xj� eGY ��yi2j;xj��� �GY �min[�yi1j; �yi2j];xj��GY ��yi1j ;xj�GY ��yi2j;xj����� �� A N �= N�1 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j � o(1)= o(1)N�1 BX̀=1 Xj2A ` � Xi2Ù�A ` !ij�2: (3.2.80)By arguments similar to those used in (3.2.17), we have that the order of the right handside of (3.2.80) is o(1). Thus, N eV �TL �� A N � converges to NV �TL �� A N � in L1.Part (c). As in part (b),E���� eGY ( _y;xi)[1� eGY ( _y;xi)]�GY ( _y;xi)[1�GY ( _y;xi)]��� �� A N� = o(1):



74Then,E����N�eV �TN �� A N �� V �TN �� A N ����� �� A N� == E����N�1 Xi2AcN n eGY ( _y;xi)[1� eGY ( _y;xi)]�GY ( _y;xi)[1�GY ( _y;xi)]o��� �� A N�6 N�1 Xi2AcN E���� eGY ( _y;xi)[1� eGY ( _y;xi)]�GY ( _y;xi)[1�GY ( _y;xi)]��� �� A N�= N�1 Xi2A cN o(1)= o(1):Thus, N eV �TN �� A N � converges to NV �TN �� A N � in L1. NIn section 3.3 we will use the results (b) and (c) from Corollary 3.2.1 to construct avariance estimator for eFL�( _y)� FN( _y).3.2.4 Case D: Yi � GY ( _y;xi); � estimatedIn this section we study the properties and distribution of bFL( _y) when the parameter� is estimated by b� given in (3.1.5). As in Section 3.2.3, the assumptions about thesuperpopulation model are speci�ed in terms of the conditional distribution of Y givenx. We will prove in Theorem 3.2.5 that the results of Theorem 3.2.4 hold when theparameter � is estimated from the data. Thus, the local-residuals estimator is modelconsistent for the �nite population distribution function and approximately normallydistributed, even if both the mean and the variance of Y given x are misspeci�ed in thesuperpopulation model.



75Theorem 3.2.5 Let fA N g be a sequence of samples selected from the sequence of �nitepopulations fUNg. Assume that the sample A N is divided into BN groups, each ofsize kN , as described in (3.1.3). Assume a superpopulation model where the Yi areindependent and P (Yi 6 y �� xi) = GY (y;xi) (3.2.81)for i 2 UN. The set fx1; x2; : : : ; xNg is assumed �xed and known. Let hi = h(xi), whereh(�) is the function used in constructing estimator (3.1.4). Assume that there existsan mh such that 0 < mh 6 h(xi) < 1 for i 2 UN. Assume A.1a through A.4a fromTheorem 3.2.2, and A.5c through A.7c from Theorem 3.2.4. Also assumeA.8d The positive function h(x) is di�erentiable and there exists an _Mhx such thatjhj(h�1j xj � h�1i xi) 6 jxi � xjj _Mhxfor all x.A.9d The max`(b`) = O(B�1N ), where b` is the length of bin `.A.10d The sequence of fxi : i 2 A N g is such that jb� � �j = Op(N�1=2).Let bFL( _y) be the estimator (3.1.4) with the estimated � used in (3.1.6) and let eFL�( _y)be the estimator (3.1.4) with the true � used in (3.1.6). Then,(a) The sequence N1=2n bFL( _y)� eFL�( _y)oconverges to zero in probability for a �xed point _y.(b) If the � of assumption A.2a is greater than 0.5, then the sequencenV � eFL�( _y)� FN( _y) �� A N �o�1=2nbFL( _y)� FN( _y)o



76converges in distribution to a standard normal random variable, where V � eFL�( _y)�FN( _y) �� A N � is given in Theorem 3.2.4.Proof. Part (a). The estimation error n bFL( _y)�FN( _y)o can be decomposed into twoparts, bFL( _y)� FN( _y) = n bFL( _y)� eFL�( _y)o + neFL�( _y)� FN ( _y)o: (3.2.82)For N1=2� bFL( _y) � eFL�( _y)� to converge to zero in probability, we need to show thatfor any � > 0 and � > 0, there exists N�� such that N > N�� implies thatP �N1=2j bFL( _y)� eFL�( _y)j > � �� A N � < �: (3.2.83)Let DN be the event DN = nN1=2j bFL( _y)� eFL�( _y)j > �o. By assumption A.10d, forany � > 0 we can �nd � = O(N�1=2) and N�� such that for N > N��,P �jb� � �j > �� < �=2:Then for all N > N��,P �DN �� A N � = P �jb� � �j > ��P �DN �� A N ; jb� � �j > ��+P �jb� � �j < ��P �DN �� A N ; jb� � �j < ��< �=2 +P �jb� � �j < ��P �DN �� A N ; jb� � �j < ��6 �=2 + P �DN �� A N ; jb� � �j < ��: (3.2.84)We extend the notation for ��ij de�ned in (3.2.50) to��ij(b) = hj(h�1i � h�1j ) _y + hj(h�1j xj � h�1i xi)b; (3.2.85)



77to make explicit whether ��ij is computed using � or b�. Let�ij = I�Yj 6 _y + ��ij(b�)�� I�Yj 6 _y + ��ij(�)�:By (3.2.48), we have thatN1=2��� bFL( _y)� eFL�( _y)��� = N1=2���N�1 Xi2AcN Xj2A `i !ijI�Yj 6 _y + ��ij(b�)���N�1 Xi2A cN Xj2A `i !ijI�Yj 6 _y + ��ij(�)����6 N�1=2 Xi2AcN Xj2A `i !ij���I�Yj 6 _y + ��ij(b�)�� I�Yj 6 _y + ��ij(�)����= N�1=2 Xi2A cN Xj2A `i !ij����ij���: (3.2.86)We will prove that (3.2.86) converges to zero in L1 conditional on A N and jb� � �j < �,that is, EhN�1=2Xi2A c Xj2A `i !ij j�ijj �� A N ; jb� � �j < �i �! 0 (3.2.87)as N !1. Note that, conditional on A N and jb� � �j < �,� j�ijj can only take the values 0 or 1,� j�ijj = 1 only when_y + ��ij(b�) < Yj 6 _y + ��ij(�) or_y + ��ij(�) < Yj 6 _y + ��ij(b�),� ��ij(b) is a monotone function of b,� ��ij(b�) is then restricted to be betweenm� = min ���ij(�+�); ��ij(���)� and M� = max ���ij(�+�); ��ij(���)�;



78� by (3.2.50), the distance between m� and M� isM� �m� = j��ij(�+�) � ��ij(���)j= j(� + �)� (� � �)j � jhj(h�1j xj � h�1i xi)j= 2�jhj(h�1j xj � h�1i xi)j: (3.2.88)The expected value of (3.2.86) given jb� � �j < � and A N isE�N�1=2Xi2Ac Xj2A `i !ijj�ijj �� A N ; jb� � �j < �� == N�1=2Xi2Ac Xj2A `i !ijE�j�ijj �� jb� � �j < ��= N�1=2Xi2Ac Xj2A `i !ijP �j�ijj = 1 �� jb� � �j < ��;(3.2.89)with P �j�ijj = 1 �� jb� � �j < �� = P � _y +m� < Yj 6 _y + ��ij(�)�+P � _y + ��ij(�) < Yj 6 _y +M��= GY ( _y +M�;xj)�GY ( _y +m�;xj): (3.2.90)An upper bound for (3.2.90) isGY ( _y +M�;xj)�GY ( _y +m�;xj) 6 (M� �m�) _Mgg by A.7d= 2�jhj(h�1j xj � h�1i xi)j _Mgg by (3.2.88)6 2�jxi � xjj _Mhx _Mgg by A.8d6 2�(max` b`) _Mhx _Mgg: (3.2.91)The order of (3.2.91) depends on the order of � and max` b`, since for a �xed _y both_Mhx and _Mgg are constants. By A.10d, � = O(N�1=2) and, by A.9d, max` b` = O(B�1N ).



79Substituting (3.2.91) into (3.2.89) we have thatE�N�1=2 Xi2AcN Xj2A `i !ij j�ijj �� A N ;jb� � �j < �� == N�1=2 Xi2A cN Xj2A `i !ijP �j�ijj = 1 �� A N ; jb� � �j < ��6 N�1=2 Xi2A cN Xj2A `i !ij2�(max` b`) _Mhx _Mgg= N�1=2 Xi2A cN Xj2A `i !ijO(N�1=2)O(B�1N )= O(N�1B�1N ) Xi2A cN Xj2A `i !ij= O(B�1N ); (3.2.92)since Pj2A `i !ij = 1. By A.2a, BN = O(N�) ! 1 as N ! 1, which implies that(3.2.86) converges to zero in L1. Then, conditional on A N and jb� � �j < �, (3.2.86)converges to zero in probability, and we can �nd N��� such that for any N > N���,P �N�1=2 Xi2AcN Xj2A `i !ijj�ijj > � �� A N ; jb� � �j < �� < �=2: (3.2.93)By (3.2.86), N1=2��� bFL( _y) � eFL�( _y)��� 6 N�1=2Pi2A cN Pj2A `i !ij����ij���. Then, the occur-rence of the event DN = nN1=2��� bFL( _y) � eFL�( _y)��� > �o implies the occurrence ofnN�1=2Pi2AcN Pj2A `i !ij����ij��� > �o. In other words,DN = nN1=2��� bFL( _y)� eFL�( _y)��� > �o � nN�1=2 Xi2AcN Xj2A `i !ij����ij��� > �o;andP�DN �� A N ; jb� � �j < �� 6 P�N�1=2 Xi2AcN Xj2A `i !ij����ij��� > � �� A N ; jb� � �j < �� < �=2(3.2.94)for all N > N��� by (3.2.93).



80For all N > max(N��; N���), we have that both (3.2.84) and (3.2.94) hold. Then forany N > max(N��; N���)P �N1=2j bFL( _y)� eFL�( _y)j > � �� A N � = P �DN �� A N � < �:Hence, N�1=2��� bFL( _y)� eFL�( _y)���! 0in probability.Part (b). We can write each of the terms of the sequencenV � eFL�( _y)� FN ( _y) �� A N �o�1=2n bFL( _y)� FN ( _y)oas nV � eFL�( _y)� FN( _y) �� A N �o�1=2nbFL( _y)� FN( _y)o == nV � eFL�( _y)� FN( _y) �� A N �o�1=2nbFL( _y)� eFL�( _y)o ++ nV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)o:(3.2.95)In part (a) we showed that N1=2nbFL( _y) � eFL�( _y)o converges to zero in probability asN !1. By (3.2.64) we have that V � eFL�( _y)� FN( _y) �� A N � is O(N�1). Then the �rstterm on the right hand side of (3.2.95),nV � eFL�( _y)� FN( _y) �� A N �o�1=2n bFL( _y)� eFL�( _y)oconverges to zero in probability. By Slutsky's theorem, we have thatnV � eFL�( _y)� FN ( _y) �� A N �o�1=2n bFL( _y)� FN ( _y)oand nV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)ohave the same asymptotic distribution given by part (b) of Theorem 3.2.4. N



813.3 Variance Estimation. Con�dence Interval ConstructionChambers and Dunstan (1986) present an estimator for the variance of the estimationerror of bFCD( _y). The variance of bFCD( _y) � FN( _y), shown in (2.3.8), has two terms,one term that depends on the sample units, denoted by W�r( _y; �), and one term thatdepends on the unobserved units, denoted by Wr( _y; �). The term W�r( _y; �) is similarto the term V �TL �� A N � that appears in (3.2.61), except that V �TL �� A N � does notcontain the variation due to the estimation of the parameter �. The terms Wr( _y; �)and V (TN �� A N ) are equal up to a constant, V (TN �� A N ) = (1� nN�1)2Wr( _y; �). .Rao, Kovar and Mantel (1990) present a variance estimator for bFRKMdm( _y) that isthe variance estimator of a di�erence estimator. However, Rao, Kovar and Mantel (1990)do not give an estimator for the variance of bFRKMdm( _y) � FN ( _y).In this section we will present estimators for the variance of the estimation errorbFL( _y) � FN( _y) and the variance of the estimator bFL( _y) as an estimator of the super-population distribution function. The estimator of the variance of bFL( _y) � FN( _y) isbased on the variance of bFL( _y) � FN( _y) given in Theorem 3.2.4. For the variance ofbFL( _y) � F ( _y) we present two estimators that are based on the Jackknife resamplingmethod. Another estimator of the variance of bFL( _y), based on the distribution of the�Zj de�ned in assumption A.6c of Theorem 3.2.4, is also suggested.In Theorem 3.2.5 we showed that eFL�( _y) and bFL( _y) have the same limiting distri-bution. The e�ect of estimating � is of smaller order, O(N�1B�1N ), than the order,O(N�1), of the variance of estimators eFL�( _y) and bFL( _y). We will consider the varianceof eFL�( _y)�F ( _y) and the variance of eFL�( _y)�FN( _y) as approximations to the varianceof bFL( _y)� F ( _y) and the variance of bFL( _y)�FN ( _y), respectively. Furthermore, since byA.10d, jb� � �j = Op(N�1=2), we will replace � by b� to estimate the variances of eFL�( _y)



82and eFL�( _y)� FN ( _y).3.3.1 Estimation of the variance of eFL�( _y)� FN( _y)By Theorem 3.2.4 and (3.2.59), the conditional variance of eFL�( _y)� FN( _y) isV � eFL�( _y)� FN( _y) �� A N � = V �TL �� A N �+ V �TN �� A N �; (3.3.1)whereV �TL �� A N � = N�2 BX̀=1 Xj2A ` Xi1;i22Ù�A ` !i1j!i2j �� �GY �min[�yi1j; �yi2j];xj��GY ��yi1j;xj�GY ��yi2j;xj��;and V �TN �� A N � = N�2 Xi2AcN GY ( _y;xi)[1�GY ( _y;xi)]:The term TL is the part of eFL�( _y) � FN ( _y) that depends on the sample units. Theterm TN is the part of the estimation error that depends on the nonsample units. Thefollowing Theorem suggests a model consistent estimator for the analytical variance,given in (3.3.1), of eFL�( _y)� FN ( _y).Theorem 3.3.1 Assume A.1a through A.4a from Theorem 3.2.2. Assume that the valueof � in A.2a satis�es 0 < � < 1. Let the model 3.2.45 hold, and assume A.5c throughA.9c from Theorem 3.2.4. Then,limN!1P���eVee( _y)� V � eFL�( _y)� FN ( _y) �� A N ��� > � �� A N� = 0;where eVee( _y) = eV �TL �� A N�+ eV �TN �� A N�; (3.3.2)eV �TL �� A N� is de�ned in (3.2.71) and eV �TN �� A N� is de�ned in (3.2.72).



83Proof. By part (a) of Corollary 3.2.1 we have that eGY ( _y;xi) is model consistentfor GY ( _y;xi), where eGY ( _y;xi) is de�ned in (3.2.67). Moreover, by parts (b) and (c) ofCorollary 3.2.1, neV �TL �� A N � is model consistent for nV �TL �� A N � and neV �TN �� A N�is model consistent for nV �TN �� A N �. Therefore, from (3.3.1) an (3.3.2), it follows that(3.3.2) is model consistent for V � eFL�( _y)� FN ( _y) �� A N �. NNote that estimator (3.3.2) allows us to evaluate the contribution of each componentof the estimation error, the part due to the sample, and the part due to the unobservedunits. In Theorem 3.3.2 we show that eVee( _y) can be used to construct tests of hypothesesand con�dence intervals for eFL�( _y)� FN( _y).Theorem 3.3.2 Assume A.1a through A.4a from Theorem 3.2.2. Let the model 3.2.45hold, and assume A.5c through A.9c from Theorem 3.2.4. Also assume that the value of� in A.2a satis�es 0:5 < � < 1. Then,neVee( _y)o�1=2n eFL�( _y)� FN( _y)o (3.3.3)converges in distribution to a N(0; 1), where eVee( _y) is de�ned in (3.3.2).Proof. By Theorem 3.2.4,nV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)oconverges in distribution to a N(0; 1). By Theorem 3.3.1, neVee( _y) converges in proba-bility to nV � eFL�( _y)� FN( _y) �� A N �. Then,nV � eFL�( _y)� FN( _y) �� A N �o�1=2neFL�( _y)� FN ( _y)o == neVee( _y)o�1=2neFL�( _y)� FN( _y)o++ �neVee( _y)o�1=2 � nV � eFL�( _y)� FN( _y) �� A N �o�1=2�n eFL�( _y)� FN ( _y)o:(3.3.4)



84The last term in the right hand side of (3.3.4) converges to zero in probability. Thus,by Slutsky's Theorem, neVee( _y)o�1=2n eFL�( _y)� FN( _y)oand nV � eFL�( _y)� FN( _y) �� A N �o�1=2n eFL�( _y)� FN( _y)ohave the same limiting distribution, given by Theorem 3.2.4. NBy Theorem 3.3.2, we can use eVee( _y) and (3.3.3) to construct con�dence sets and dohypothesis testing for the �nite population distribution function FN( _y).3.3.2 Estimation of the variance of eFL�( _y)� F ( _y)The estimator bFL( _y) is a weighted mean of indicator funtions as shown in (3.1.9).Similarly, estimator eFL�( _y), where the true � is used in (3.1.6), is also a weighted meanof indicator functions, namely,eFL�( _y) = N�1h Xj2AN I(Yj 6 _y) + Xi2AcN Xj2A `i !ijI�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]�i:Rearranging terms, we can write eFL�( _y) aseFL�( _y) = N�1 Xj2AN hI(Yj 6 _y) + Xi2Ùj�A `j !ijI�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]�i= N�1 Xj2AN hI(Yj 6 _y) + �Zji;where �Zj = Xi2Ù j�A `j !ijI�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]�= Xi2Ù j�A `j !ijI�Uj 6 _ui�= Xi2Ù j�A `j !ijI�Yj 6 �yij�



85is de�ned in A.6c in Theorem 3.2.4, Uj = h�1j [Yj � xj�], _ui = h�1i [ _y� xi�], and `j is thebin that contains unit j.The analytical variance of eFL�( _y) � F ( _y) can be computed and estimated by usingan estimator similar to the one decribed in Theorem 3.3.2. In this section we will focuson the construction of alternative estimators.The local-residuals estimator is based on the modelYi = xi� + h(xi)Ui; (3.3.5)where the Ui are independent and identically distributed random variables with meanzero and distribution function G(u). Under model (3.3.5) the �Zj are conditionally in-dependent given A N . In addition to being independent, for each bin `, the k randomvariables �Zj with j 2 A ` are identically distributed.Let IJ = I�Yj 6 _y�. Then, Ij are independent, but not identically distributed, evenwhen the units are in the same bin. The expectation and variance of I�Yj 6 _y� areG�h�1j [ _y � xj�]� and G�h�1j [ _y � xj�]��1 � G�h�1j [ _y � xj�]��, respectively. Under theassumptions of Theorem 3.2.4, for j1 and j2 in the same bin `, we have thatlimN!1 ��E�I�Yj1 6 _y� �� A N �� E�I�Yj2 6 _y� �� A N ��� = 0; (3.3.6)and, limN!1 ��V �I�Yj1 6 _y� �� A N �� V �I�Yj2 6 _y� �� A N ��� = 0: (3.3.7)Results (3.3.6) and (3.3.7) suggest that we can approximate the model variance of eFL�( _y)by the variance of the n independent variablesLj = I�Yj 6 _y�+ �Zj ; (3.3.8)



86for j 2 A ` and ` = 1; : : : ; BN . Asymptotically the Lj for all j in the same bin, have thesame model mean and model variance. Because the Lj are independent,V � eFL�( _y) �� A N � = V �N�1 Xj2AN Lj �� A N �= V �N�1 BNX̀=1 Xj2A ` Lj �� A N �= N�2 BNX̀=1 V �Xj2A ` Lj �� A N �= N�2 BNX̀=1 kN�2̀; (3.3.9)where �2̀ = k�1N Pj2A ` V �Lj �� A N �. Note that V �Lj �� A N � for j 2 A ` are not equal to�2̀, but the quantities fV �Lj �� A N �� �2̀g converge to zero as N !1. We propose twoestimators of V � eFL�( _y) �� A N �:(1) an estimator based on the sample variance of the Lj,(2) a Jackknife estimator constructed by iteratively deleting one unit from the sampleat a time and recomputing the local-residuals estimator with the n� 1 remainingunits.The estimator based on the sample variance of the Lj is,eVL( _y) = N�2 BNX̀=1 (k � 1)�1 Xj2A `(Lj � �L`)2; (3.3.10)where �L` = k�1Pj2A ` Lj, and the sample variances b�2̀ = (k� 1)�1Pj2A ` (Lj � �L`)2 areasymptotically unbiased for �2̀, for ` = 1; : : : ; B. The Jackknife based estimator iseVJK( _y) = n�1 BNX̀=1 X�2A ` � eF �L�(��)( _y)� eFL�( _y)�2; (3.3.11)where eF �L�(��)( _y) is the local-residuals estimator computed from the reduced sampleA N � f�g. The reduced sample A N � f�g is the set of indices remaining when unit �



87is removed from bin `� in the original sample A N . The estimator computed from thereduced sample is eF �L�(��)( _y) = N�1n X̀6=`� Xj2A ` Lj + Xj2A �̀� L�jo; (3.3.12)where A �̀� = A ` � f�g,L�j = I(Yj 6 _y) + Xi2Ù��A �̀� !�ijI�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]�;and, !�ij = ��1j hPj02A �̀� ��1j0 i�1 are the adjusted weights when unit � is deleted.In practice, we have to estimate � to compute each eF �L�(��)( _y). We computed twoversions of the Jackknife estimator: (1) one version that uses the b� and the byij computedfrom the sample A N , and (2) another version that recomputes b� and byij for each of then reduced samples A N � f�g.



883.4 Estimation of the Superpopulation Distribution FunctionThe �nite population distribution function has N jumps of magnitude N�1 at thepoints yi for i 2 UN, provided that the yi are di�erent. Once the sample is selected andthe yj are observed for j 2 A N , we know where n of the N jumps are located, providedthat the yj are di�erent. From a superpopulation perspective, the yj for j 2 A N area particular realization of the random variables Yj. Recall that the superpopulationdistribution function is de�ned in (2.1.5) asF ( _y) = P(Y 6 _y) = N�1Xi2UP(Yi 6 _y �� x = xi)= N�1Xi2UEfI(Yi 6 _y) �� x = xig:We de�ne an estimator of the superpopulation distribution function asbF fiL ( _y) = N�1Xi2U bGL`i(h�1i [ _y � xib�]); (3.4.1)where bGL`i and b� are de�ned in (3.1.6) and (3.1.5), respectively. The full-imputationlocal-residuals estimator of (3.4.1) can be written asbF fiL ( _y) = N�1hXj2A bGL`j (h�1j [ _y � xj b�]) +Xi2A c bGL`i(h�1i [ _y � xib�])i: (3.4.2)The di�erence between the local-residuals estimator (3.1.4),bFL( _y) = N�1hXj2A I(Yj 6 _y) +Xi2A c bGL`i(h�1i [ _y � xib�])i;and the estimator (3.4.2) is that the distribution function of the residuals is also esti-mated for the sample units in (3.4.1), while in estimator (3.1.4) the quantities I(Yj 6 _y)are taken for the units in the sample.We will consider the distribution of estimator (3.4.1) under the superpopulationmodel used in Theorem 3.2.4 for � known and for � estimated from the data.



893.4.1 Case E: Yi � GY ( _y;xi), � knownWe proved in Theorem 3.2.4 that the local-residuals estimator (3.1.4) is robustagainst misspeci�cations of the mean and variance functions in the superpopulationmodel. We will study the properties of the full-imputation local-residuals estimatorbF fiL ( _y) as an estimator of the superpopulation distribution function. In Theorem 3.4.1we will show model consistency and limiting normality of estimator (3.4.1).Theorem 3.4.1 Let fA N g be a sequence of samples selected from the sequence of �nitepopulations fUNg. Assume that the sample A N is divided into BN groups, each ofsize kN , as described in (3.1.3). Assume a superpopulation model where the Yi areindependent and P (Yi 6 y �� xi) = GY (y;xi) (3.4.3)for i 2 UN. Let hi = h(xi), where h(�) is the function used in constructing estimator(3.4.1). Assume that there exists an mh such that 0 < mh 6 h(xi) <1 for i 2 UN. Let_y be a �xed point. Assume A.1a through A.4a from Theorem 3.2.2, A.7c through A.9cfrom Theorem 3.2.4, andA.6e For any N , nN�1Pj2AN V ( �Zj �� A N )o is positive, whereV ( �Zj �� A N ) = Xi1;i22Ù !i1j!i2j�GY �min[�yi1j ; �yi2j];xj��GY ��yi1j;xj�GY ��yi2j ;xj��;�Zj = Xi2Ù !ijI�Yj 6 �yij�; j 2 A N ;�yij = _y + hj(h�1i � h�1j ) _y + hj(h�1j xj � h�1i xi)�;` is the bin that contains unit j and U` is the set of indices in bin `.Let eF fiL�( _y) be the estimator (3.4.1) with the true � used in (3.1.6). Then,



90(a) The estimator eF fiL�( _y) satis�eslimN!1P��� eF fiL�( _y)� F ( _y)�� > � �� A N � = 0for all � > 0.(b) If the � in A.2a is greater than 0.5, then the sequencenV � eF fiL�( _y) �� A N �o�1=2neF fiL�( _y)� F ( _y)o (3.4.4)converges in distribution to a N(0; 1) random variable, whereV � eF fiL�( _y) �� A N � = N�2 BX̀=1 Xj2A ` Xi1;i22Ù !i1j!i2j �� �GY �min[�yi1j; �yi2j];xj��GY ��yi1j;xj�GY ��yi2j;xj��:(3.4.5)Proof. Part (a). Estimator (3.4.1) can be written aseF fiL�( _y) = N�1 Xi2UN Xj2A `i !ijI�h�1j [Yj � xj�] 6 h�1i [ _y � xi�]�= N�1 Xi2UN Xj2A `i !ijI�Yj 6 _y + ��ij� (3.4.6)by (3.2.48), where ��ij = hj(h�1i �h�1j ) _y+hj(h�1i xi�h�1j xj)� is de�ned in (3.2.50). Thesuperpopulation distribution function can be written asF ( _y) = P(Y 6 _y) = N�1 Xi2UN P(Yi 6 _y �� x = xi)= N�1 Xi2UNGY ( _y;xi)= N�1 BNX̀=1 Xi2ÙGY ( _y;xi)= N�1 BNX̀=1 Xi2ÙXj2A ` !ijGY ( _y;xi)= N�1 BNX̀=1 Xj2A ` Xi2Ù !ijGY ( _y;xi); (3.4.7)



91because the Pj2A ` !ij = 1. Combining (3.4.6) and (3.4.7), the estimation error can beexpressed aseF fiL�( _y)� F ( _y) = N�1 BNX̀=1 Xj2A ` Xi2Ù !ijhI�Yj 6 _y + ��ij��GY ( _y;xi)i: (3.4.8)The model expectation of (3.4.8) isEh eF fiL�( _y)� F ( _y) �� A N i = EhN�1 BNX̀=1 Xj2A ` Xi2Ù !ij�I�Yj 6 _y + ��ij��GY ( _y;xi)	 �� A N i= N�1 BNX̀=1 Xj2A ` Xi2Ù !ijhGY ( _y + ��ij;xj)�GY ( _y;xi)i:In Theorem 3.2.4 we proved that under assumptions A.7c, A.8c and A.9c,max`=1;::: ;BN maxi2Ù; j2Ù hGY ( _y + ��ij;xj)�GY ( _y;xi)i = O(B�1N )as shown in (3.2.57). Then, we have that���Eh eF fiL�( _y)� F ( _y) �� A N i��� = ���N�1 BNX̀=1 Xj2A ` Xi2Ù !ijhGY ( _y + ��ij;xj)�GY ( _y;xi)i���6 N�1 BNX̀=1 Xj2A ` Xi2Ù !ij���GY ( _y + ��ij;xj)�GY ( _y;xi)���= N�1 BNX̀=1 Xj2A ` Xi2Ù !ijO(B�1N )= O(B�1N ): (3.4.9)Model unbiasedness of estimator (3.4.1) follows, since by A.2a we have that BN ! 1as N ! 1. Result (3.4.9) shows that model unbiasedness of (3.4.1) holds even whenboth the mean and variance function of Y given x are misspeci�ed.



92The model variance of eF fiL�( _y) isV � eF fiL�( _y) �� A N � = V �N�1 BNX̀=1 Xj2A ` Xi2Ù !ijI�Yj 6 _y + ��ij� �� A N �= N�2 BNX̀=1 Xj2A ` V �Xi2Ù !ijI�Yj 6 _y + ��ij� �� A N�; (3.4.10)because the Yj are independent under model (3.4.3). Using the �Zj de�ned in A.6e wecan write (3.4.10) as V � eF fiL�( _y) �� A N � = N�2 BNX̀=1 Xj2A ` V � �Zj �� A N�= N�2 Xj2AN V � �Zj �� A N�; (3.4.11)where V � �Zj �� A N� = V � Xi2Ù j !ijI�Yj 6 _y + ��ij�= V � Xi2Ù j !ijI�Yj 6 �yij��by (3.2.49), where `j is the index of the bin that contains unit j. Then,V � �Zj �� A N� = V � Xi2Ùj !ijI�Yj 6 �yij��= Xi1;i22Ù j !i1j!i2jCov�I�Yj 6 �yi1j�; I�Yj 6 �yi2j��= Xi1;i22Ù j !i1j!i2j�GY �min[�yi1j; �yi2j];xj��GY ��yi1j;xj�GY ��yi2j;xj��:(3.4.12)Then, combining (3.4.10) and (3.4.12), we have thatV � eF fiL�( _y) �� A N� = N�2 BNX̀=1 Xj2A ` Xi1;i22Ù !i1j!i2j �� �GY �min[�yi1j; �yi2j];xj��GY ��yi1j;xj�GY ��yi2j;xj��:(3.4.13)



93The covariances that appear in (3.4.13) are bounded, in absolute value, by 1=4. Then,V � eF fiL�( _y) �� A N� = ���N�2 BNX̀=1 Xj2A ` Xi1;i22Ù !i1j!i2j �� �GY �min[�yi1j; �yi2j ];xj��GY ��yi1j ;xj�GY ��yi2j;xj�����6 N�2 BNX̀=1 Xj2A ` Xi1;i22Ù !i1j!i2j �� ����GY �min[�yi1j; �yi2j];xj��GY ��yi1j;xj�GY ��yi2j;xj�����6 N�2 BNX̀=1 Xj2A ` Xi1;i22Ù !i1j!i2j 4�1= 4�1N�2 BNX̀=1 Xj2A ` �Xi2Ù !ij�2= 4�1N�2 BNX̀=1 Xj2A ` O(1)= N�1O(1) = O(N�1) (3.4.14)because �Pi2Ù !ij� is O(1) as shown in (3.2.16). Thus, we have that eF fiL�( _y) is asymp-totically model unbiased, by (3.4.9), and that the model variance of eF fiL�( _y) goes tozero as N ! 1, by (3.4.14). Then, eF fiL�( _y) is model consistent for the superpopulationdistribution function.Part (b). We proved in (3.4.13) that the model variance of eF fiL�( _y) is given by (3.4.5).We must show that (3.4.4) converges in distribution to a standard normal. The estimatoreF fiL�( _y) is a weighted sum of indicator functions, as expressed in (3.4.6). All the momentsof the indicator functions exist, then, A.6e is su�cient for the Lyapounov condition forthe sum N�1Pj2AN �Zj . Then, since � is assumed to be greater than 0.5,nV � eF fiL�( _y) �� A N �o�1=2neF fiL�( _y)� F ( _y)o == nV �N�1 Xj2AN �Zj �� A N �o�1=2nN�1 Xj2AN �Zj � F ( _y)oconverges in distribution to a standard normal as N !1.



943.4.2 Case F: Yi � GY ( _y;xi); � estimatedIn Section 3.2.4 we proved that the results for estimator eFL�( _y) given in Theo-rem 3.2.4 hold when � is estimated from the data. We will prove in Theorem 3.4.2that the results for estimator eF fiL�( _y) given in Theorem 3.4.1 also hold when � is es-timated. Theorem 3.4.2 essentially reproduces Theorem 3.2.5 for the full-imputationlocal-residuals estimator.Theorem 3.4.2 Let fA N g be a sequence of samples selected from the sequence of �nitepopulations fUNg. Assume that the sample A N is divided into BN groups, each ofsize kN , as described in (3.1.3). Assume a superpopulation model where the Yi areindependent and P (Yi 6 y �� xi) = GY (y;xi) (3.4.15)for i 2 UN. The set fx1; : : : ; xNg is assumed �xed and known. Let hi = h(xi), whereh(�) is the function used in constructing estimator (3.4.1). Assume that there exists anmh such that 0 < mh 6 h(xi) < 1 for i 2 UN. Let _y be a �xed point. Assume A.1athrough A.4a from Theorem 3.2.2, A.5c through A.7c from Theorem 3.2.4, and A.8dthrough A.10d from Theorem 3.2.5.Let bF fiL ( _y) be the estimator (3.4.1) and let eF fiL�( _y) be the estimator (3.4.1) with thetrue � used in (3.1.6). Then,(a) The sequence N1=2n bF fiL ( _y)� eF fiL�( _y)oconverges to zero in probability.(b) If the � in A.2a is greater than 0.5, then the sequencenV � eF fiL�( _y) �� A N �o�1=2nbF fiL ( _y) � F ( _y)o



95converges in distribution to a N(0; 1) random variable, where V � eF fiL�( _y) �� A N � isgiven in Theorem 3.4.1.Proof. Part (a). The estimation error n bF fiL ( _y)�F ( _y)o can be decomposed into twoparts, n bF fiL ( _y)� F ( _y)o = nbF fiL ( _y) � eF fiL�( _y)o+ n eF fiL�( _y)� F ( _y)o: (3.4.16)For N1=2� bF fiL ( _y)� eF fiL�( _y)� to converge to zero in probability, we need to show thatfor any � > 0 and � > 0, there exists N�� such that N > N�� implies thatP �N1=2j bF fiL ( _y)� eF fiL�( _y)j > � �� A N � < �: (3.4.17)Let DN = nN1=2j bF fiL ( _y) � eF fiL�( _y)j > �o. By assumption A.10d, for any � > 0 wecan �nd � = O(N�1=2) and N�� such that for N > N��,P �jb� � �j > �� < �=2:Then for all N > N��,P �DN �� A N � = P �jb� � �j > ��P �DN �� A N ; jb� � �j > ��+P �jb� � �j < ��P �DN �� A N ; jb� � �j < ��< �=2 +P �jb� � �j < ��P �DN �� A N ; jb� � �j < ��6 �=2 + P �DN �� A N ; jb� � �j < ��: (3.4.18)We extend the notation for ��ij de�ned in (3.2.50) to��ij(b) = hj(h�1i � h�1j ) _y + hj(h�1j xj � h�1i xi)b; (3.4.19)



96to make explicit whether ��ij is computed using � or b�. Let�ij = I�Yj 6 _y + ��ij(b�)�� I�Yj 6 _y + ��ij(�)�:By (3.4.6), we have thatN1=2��� bF fiL ( _y)� eF fiL�( _y)��� = N1=2���N�1 Xi2UN Xj2A `i !ijI�Yj 6 _y + ��ij(b�)���N�1 Xi2UN Xj2A `i !ijI�Yj 6 _y + ��ij(�)����6 N�1=2 Xi2UN Xj2A `i !ij���I�Yj 6 _y + ��ij(b�)�� I�Yj 6 _y + ��ij(�)����= N�1=2 Xi2UN Xj2A `i !ij����ij���: (3.4.20)We will prove that (3.4.20) converges to zero in L1 conditional on A N and jb� � �j < �,that is, EhN�1=2 Xi2UN Xj2A `i !ijj�ijj �� A N ; jb� � �j < �i �! 0 (3.4.21)as N !1. Note that, conditional on A N and jb� � �j < �,� j�ijj can only take the values 0 or 1,� j�ijj = 1 only when_y + ��ij(b�) < Yj 6 _y + ��ij(�) or_y + ��ij(�) < Yj 6 _y + ��ij(b�),� ��ij(b) is a monotone function of b,� ��ij(b�) is then restricted to be betweenm� = min ���ij(�+�); ��ij(���)� and M� = max ���ij(�+�); ��ij(���)�;



97� by (3.2.50), the distance between m� and M� isM� �m� = j��ij(�+�) � ��ij(���)j= j(� + �)� (� � �)j � jhj(h�1j xj � h�1i xi)j= 2�jhj(h�1j xj � h�1i xi)j: (3.4.22)The expected value of (3.4.20) given jb� � �j < � and A N isE�N�1=2 Xi2UN Xj2A `i !ijj�ijj �� A N ; jb� � �j < �� == N�1=2 Xi2UN Xj2A `i !ijE�j�ijj �� jb� � �j < ��= N�1=2 Xi2UN Xj2A `i !ijP �j�ijj = 1 �� jb� � �j < ��;(3.4.23)with P �j�ijj = 1 �� jb� � �j < �� = P � _y +m� < Yj 6 _y + ��ij(�)�+P � _y + ��ij(�) < Yj 6 _y +M��= GY ( _y +M�;xj)�GY ( _y +m�;xj): (3.4.24)An upper bound for (3.4.24) isGY ( _y +M�;xj)�GY ( _y +m�;xj) 6 (M� �m�) _Mgg by A.7d= 2�jhj(h�1j xj � h�1i xi)j _Mgg by (3.4.22)6 2�jxi � xjj _Mhx _Mgg by A.8d6 2�(max` b`) _Mhx _Mgg: (3.4.25)The order of (3.4.25) depends on the order of � and max` b`, since for a �xed _y both_Mhx and _Mgg are constants. By A.10d, � = O(N�1=2) and, by A.9d, max` b` = O(B�1N ).



98Substituting (3.4.25) into (3.4.23) we have thatE�N�1=2 Xi2UN Xj2A `i !ij j�ijj �� A N ;jb� � �j < �� == N�1=2 Xi2UN Xj2A `i !ijP �j�ijj = 1 �� A N ; jb� � �j < ��= N�1=2 Xi2UN Xj2A `i !ij2�(max` b`) _Mhx _Mgg= N�1=2 Xi2UN Xj2A `i !ijO(N�1=2)O(B�1N )= O(N�1B�1N ) Xi2UN Xj2A `i !ij= O(B�1N ); (3.4.26)since Pj2A `i !ij = 1. By A.2a, BN = O(N�) ! 1 as N ! 1, which implies that(3.4.20) converges to zero in L1. Then, conditional on A N and jb� � �j < �, (3.4.20)converges to zero in probability, and we can �nd N��� such that for any N > N���,P �N�1=2 Xi2UN Xj2A `i !ijj�ijj > � �� A N ; jb� � �j < �� < �=2: (3.4.27)By (3.4.20), N1=2��� bF fiL ( _y) � eF fiL�( _y)��� 6 N�1=2Pi2UN Pj2A `i !ij����ij���. Then, the occur-rence of the event DN = nN1=2��� bF fiL ( _y) � eF fiL�( _y)��� > �o implies the occurrence ofnN�1=2Pi2UN Pj2A `i !ij����ij��� > �o. That is,DN = nN1=2��� bF fiL ( _y) � eF fiL�( _y)��� > �o � nN�1=2 Xi2UN Xj2A `i !ij����ij��� > �o;andP�DN �� A N ; jb� � �j < �� 6 P�N�1=2 Xi2UN Xj2A `i !ij����ij��� > � �� A N ; jb� � �j < �� < �=2(3.4.28)for N > N��� by (3.4.27).



99For N > max(N��; N���) then, we have that both (3.4.18) and (3.4.28) hold. Then forany N > max(N��; N���)P �N1=2j bF fiL ( _y) � eF fiL�( _y)j > � �� A N � = P �DN �� A N � < �:Hence, N�1=2��� bF fiL ( _y)� eF fiL�( _y)���! 0in probability.Part (b). We can write each of the terms of the sequencenV � eF fiL�( _y) �� A N �o�1=2n bF fiL ( _y)� F ( _y)oas nV � eF fiL�( _y) �� A N �o�1=2n bF fiL ( _y)� F ( _y)o == nV � eF fiL�( _y) �� A N �o�1=2n bF fiL ( _y)� eF fiL�( _y)o++ nV � eF fiL�( _y) �� A N �o�1=2neF fiL�( _y)� F ( _y)o: (3.4.29)In part (a) we showed that N1=2nbF fiL ( _y)� eF fiL�( _y)o converges to zero in probability asN !1. By (3.4.14) we have that V � eF fiL�( _y) �� A N � is O(N�1). Then the �rst term onthe right hand side of (3.4.29),nV � eF fiL�( _y) �� A N �o�1=2nbF fiL ( _y)� eF fiL�( _y)oconverges to zero in probability. By Slutsky's theorem, we have thatnV � eF fiL�( _y) �� A N �o�1=2n bF fiL ( _y)� F ( _y)oand nV � eF fiL�( _y) �� A N �o�1=2n eF fiL�( _y)� F ( _y)ohave the same asymptotic distribution given by part (b) of Theorem 3.4.1. N



100
4 MONTE CARLO RESULTSA Monte Carlo simulation was conducted to study the performance of the local-residuals estimator and the performance of the variance estimators introduced in Section3.3. The superpopulation models used for generating the data and the model usedin the construction of the local-residuals estimator are presented in Section 4.1. Theresults from the Monte Carlo simulation and a description of the methodology used inthe reported Monte Carlo estimates is presented in Section 4.2. Comments about theperformance of the local-residuals estimator are included in Section 4.3.4.1 Superpopulation modelsThree superpopulation models are considered. This set of models is by no meansintended to be an exhaustive list of real situations, but represents di�erent types ofsituations that we may encounter. The models are:Model 1: \Correct" model. Data are generated using the model speci�ed in the con-struction of the Chambers and Dunstan estimator with the distribution of thex-values skewed. For i = 1; : : : ; N :� xi is generated from a Chi-square distribution with 3 degrees of freedom,� ui is generated from a standard normal distribution,



101� the value for yi is computed as yi = max(0:01; 2 + xi + ui). In most �nitepopulations selected, all of the y values are strictly larger than 0:01.Model 2: \Heteroscedastic" model. Data are generated using the model with increasingvariance introduced by Hansen, Madow and Tepping (1983). For i = 1; : : : ; N :� xi is generated from a Gamma distribution with densityf(x) = :04x exp(�x=5);� yi given xi is generated from a Gamma distribution with densityf(y �� x) = [bc�(c)]�1yc�1 exp(�y=b);where b = 1:25x3=2(8 + 5x)�1 and c = :04x�3=2(8 + 5x)2.� Model 2 can be written asYi = :4 + :25x+ :25x3=4Ui;where the Ui are independent identically distributed random variables withexpected value zero and variance equal to one.Model 3: Model with quadratic mean. Data are generated using a quadratic relationbetween y and x. For i = 1; : : : ; N :� xi is generated from a Uniform(0,10) distribution,� ui is generated from a Uniform(-0.5, 0.5) distribution,� yi is set equal to yi = 5 + 0:2(xi � 5)2 + ui.The selected and nonselected points for a simple random sample of size 60 from a�nite population of size 600 for Models 1, 2 and 3 are presented in Figures 4.1, 4.2



102and 4.3 respectively. The �tted regression line for Model 1, from which residuals arecomputed, is also included in the �gures.The average R2 for samples of size 60 from Models 1, 2 and 3 are 0.861, 0.226 and0.025 respectively, where R2 = �Pj2A (byj � �y)2	�Pj2A (yj � �y)2	�1, �y = n�1Pj2A yj,and byj is computed using the ordinary least squares estimators for �0 and �1 as byj =b�0 + b�1xj.4.2 Methodology4.2.1 Sample sizesTwo �nite population sizes, N = 600 and N = 1200, are considered in the MonteCarlo study. A single set of auxiliary variables x1; : : : ; xN was generated for each modeland used in all Monte Carlo iterations. In each Monte Carlo iteration a new set ofy1; : : : ; yN is generated and a simple random sample without replacement of n units isselected. The sample sizes considered are n = 60 for the population of N = 600 andn = 120 for the population of size N = 1200.4.2.2 Selection of the number of binsIn this section we will consider the problem of selecting the number of bins, B, usedto construct the local-residuals estimator. Intuitively, if we believe that the model witha single conditional density adequately represents the data, we would select one bin.Conversely, if we want to be conservative against model misspeci�cation, a larger valueof BN should be selected.
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Figure 4.1 Plot of y against x and estimated regression line for a sampleof size 60 from a population of size 600 generated by Model 1.Sample=�, nonsample=�
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Figure 4.2 Plot of y against x and estimated regression line for a sampleof size 60 from a population of size 600 generated by Model 2.Sample=�, nonsample=�
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Figure 4.3 Plot of y against x and estimated regression line for a sampleof size 60 from a population of size 600 generated by Model 3.Sample=�, nonsample=�



106Let b� be the least squares estimator of � de�ned in (3.1.5), and letbuj = yj � xj b�; (4.2.1)be the observed residuals for j 2 A N . Under the Chambers and Dunstan model,Uj = Yj � xj� (4.2.2)are independent and identically distributed random variables. The local-residuals esti-mator is constructed under the assumption that if xi is \close" to xj, then the distributionof Ui is \close" to that of Uj. In both cases, the observed residuals (4.2.1) are used toapproximate the distribution function of Uj .We use crossvalidation to determine the number of bins to use in constructing thelocal-residuals estimator. Crossvalidation for a sample of size k uses the k possiblesamples of size k � 1 to predict the omitted element. Let unit � from bin `� be theomitted element. For unit �, letbG`�[��]( _u) = Xj2A �̀� !�j[��]I(buj 6 _u) (4.2.3)be the local estimator of the distribution function of the residuals evaluated at _u, whereA �̀� = A `� � � is the reduced sample in bin `� after removing unit �, and the weights!�j[��] = ��1j hPj02A �̀� ��1j0 i�1 are the adjusted sampling weights for the remaining unitsin bin A `� . We construct a measure of how good bG`�[��]( _u) is as a predictor of P(U� 6 _u)in order to choose an \optimal" number of bins. To do this, we select 20 values of _u andevaluate both bG`�[��]( _u) and I(bu� 6 _u) at these 20 values. Let bu(jo) for jo = 1; : : : ; n bethe sorted values of buj for j 2 A N . Let _u
 = bub
n=21c for 
 = 1; : : : ; 20, be the selectedvalues of _u, where the function bxc is the largest integer that is less than or equal to x.Divisions of the sample into B = 1; 2; : : : ; Bc bins are constructed, as described in(3.1.3), where Bc is the maximum number of bins considered. The value of Bc was



107initially set at 20. For Model 3, the value of Bc was changed to Bc = 30 for samples ofsize n = 60 and to Bc = 35 for samples of size n = 120. Then, for each B, we computeC(B) = X�2AN 20X
=1 �I(bu� 6 _u
)� bG`�[��]( _u
)�2� bG( _u
)�1� bG( _u
)���1; (4.2.4)where bG( _u
) = �Pj2AN ��1j 	�1Pj2AN ��1j I(buj 6 _u
). The criterion is an approxima-tion to the mean integrated square error de�ned in (2.4.5). Let Bmin be the value ofB that minimizes C(B). The number B = Bmin of bins is used to construct the local-residuals estimator. In some cases the value of n=B is not an integer. The n sampleunits are assigned to bins as follows. Let x(jo) for jo = 1; : : : ; n be the sorted values ofxj for j 2 A N . For jo = 1; : : : ; n, unit jo is assigned to bin ` = 1 + b(jo � 1)(B=n)c,where the function bxc is the largest integer that is less than or equal to x.4.2.3 Calculation of Monte Carlo means and variancesThe reported estimates are means, and functions of means, from M Monte Carloiterations. Let a(t) and b(t) be two quantities computed in Monte Carlo iteration t fort = 1; : : : ;M . The four types of estimates are:a. the mean of a(t), a(�) = M�1PMt=1 a(t),b. the square root of a mean, (a(�))1=2,c. the ratio between two means r = a(�)(b(�))�1,d. the square root of a ratio r1=2.The formulas used to approximate the variances of the estimators of items a. throughd. are presented in Table 4.1.



108Table 4.1 Formulas for the Monte Carlo estimators and Monte Carlo vari-ances for the quantities presented in Tables 4.5 through 4.32Item reported Estimator Estimated variance of estimatora. Mean a(�) = M�1PMt=1 a(t) M�2PMt=1(a(t) � a(�))2b. Square root of mean (a(�))1=2 4�1(a(�))�1M�2PMt=1(a(t) � a(�))2c. Ratio of means r = a(�)(b(�))�1 (b(�))�2M�2PMt=1(a(t) � rb(t))2d. Square root of ratio r1=2 4�1r�1(b(�))�2M�2PMt=1(a(t) � rb(t))24.3 Monte Carlo resultsThe estimators presented in Tables 4.5 through 4.32 are: local-residuals estimator(3.1.4), Chambers and Dunstan estimator (2.3.4), Rao, Kovar and Mantel estimator(2.3.13), a poststrati�ed estimator de�ned below in (4.3.1), and the Horvitz-Thompsonestimator (2.2.1).For each Monte Carlo iteration, the �nite population distribution function and the es-timators mentioned above were calculated at seven points _y that represent the 5th, 10th,25th, 50th, 75th, 90th and 95th percentiles of the superpopulation distribution functionF ( _y) de�ned in (2.1.5). The superpopulation quantiles were estimated by generating5000 �nite populations from the corresponding models and computing the correspond-ing sample quantiles from the resulting N � 5000 values of y.Two local-residuals estimators are considered, one based on the Bmin bins selectedby the crossvalidation procedure that minimizes (4.2.4), identi�ed as Local-residuals(c-val) in Tables 4.5 through 4.20, and another based on a �xed number of bins. LetbFminL ( _y) denote the local-residuals estimator computed with Bmin bins and bFL( _y) denote



109the local-residuals estimator computed with a �xed number of bins. For the populationof size 600 we considered B = 6 bins, and for the population of size 1200 we consideredB = 10 bins. The number of elements per bin, kN , is equal to: k600 = 10 and k1200 = 12.According to the assumption of � > 0:5 for the value of � in A.2a, we increased thenumber of bins more than the number of elements per bin when considering the largerpopulation with N = 1200.The poststrati�ed estimator that appears in Tables 4.5 through 4.32 is constructed asthe average of two poststrati�ed estimators: bF [1]ps ( _y) and bF [2]ps ( _y). The �rst poststrati�edestimator, bF [1]ps ( _y), is constructed as follows: divide the population of size N in BNpoststrata of equal size, N [1]h = NB�1N for h = 1; : : : ; BN . The number of poststrata isthe same as the number of bins used for the local-residuals estimator computed with a�xed number of bins. For the population of size 600, B600 = 6 and for the populationof size 1200, B1200 = 10. The sample is assigned to the strata and the stratum samplesizes, nh, are computed for h = 1; : : : ; BN . Then, bF [1]ps ( _y) is de�ned asbF [1]ps ( _y) = N�1 BNXh=1 N [1]h n�1h Xj2Ah I�yj 6 _y�;where A h is the part of the sample that falls into stratum h. To compute the secondpoststrati�ed estimator, bF [2]ps ( _y), the population is divided into BN + 1 poststrata. Thestratum sizes, N [2]h , for the �rst and last strata are equal to 2�1NB�1N , and the N [2]h forthe remaining strata are equal to N [2]h = NB�1N for h = 2; : : : ; BN . Then,bF [2]ps ( _y) = N�1 BN+1Xh=1 N [2]h n�1h Xj2Ah I�yj 6 _y�:The poststrati�ed estimator included in the tables isbFps( _y) = 2�1� bF [2]ps ( _y) + bF [2]ps ( _y)�: (4.3.1)For either bF [1]ps ( _y) or bF [2]ps ( _y), strata are collapsed when one or more of the nh are zero. Ifthe �rst or the last stratum is empty, the empty stratum is collapsed with the contiguous



110stratum. If one of the middle strata is empty, say stratum h, the corresponding Nh isdivided by 2 and 2�1Nh units are added to strata h � 1 and h + 1. If more than onestratum is empty, then the N units are reclassi�ed into 2 poststrata with 2�1N unitseach.Table 4.2 presents the average number of bins selected by the crossvalidation pro-cedure described in Section 4.2.2 for Model 1, Model 2 and Model 3, and for samplesizes of 60 and 120. An estimate of the distribution of Bmin for Model 1, ModelTable 4.2 Average number of bins selected by the crossvalidation procedurefor alternative models and sample sizes of 60 and 120. Bc = 20 forModel 1 and Model 2; Bc = 30 for Model 3, n=60; Bc = 35 forModel 3, n=120; 10000 iterations for Model 1 and Model 2, 2500iterations for Model 3Sample size Model 1 Model 2 Model 3n = 60 1.310 2.397 13.571(0.011) (0.018) (0.084)n = 120 1.345 3.171 19.912(0.011) (0.021) (0.104)2 and Model 3 is presented in Tables 4.3 and 4.4 for the populations of size 600 and1200 respectively. The columns corresponding to Model 1 show that almost 90% of thetime the procedure selects Bmin = 1 for samples of size 60 and 120. Note that whenBmin = 1, the local-residuals estimator and the Chambers and Dunstan estimator areequal under simple random sampling. For Model 2, the crossvalidation procedure tendsto select values of Bmin larger than the ones selected for Model 1. The values of Bminare larger for the sample size of 120 than for the sample size of 60. For Model 3, it isclear from Table 4.3 and 4.4 that the procedure selects larger values of Bmin than forother models. For Model 3, with Bc = 35 and a sample size of 120, the average Bmin is19.91, with a standard error of 0.10.



111Tables 4.5 through 4.10 present the estimated bias in the estimated �nite populationdistribution function of the estimators considered. In the following discussion, we usebF ( _y) to denote any of the six estimators presented in the tables: bFminL ( _y) de�ned in(3.1.4) with the number of bins selected by the procedure described in Section 4.2.2,bFL( _y) de�ned in (3.1.4), bFCD( _y) de�ned in (2.3.4), bFRKMdm( _y) de�ned in (2.3.13), bFps( _y)de�ned in (4.3.1) and bFHT ( _y) de�ned in (2.2.1). Let bF(t)( _y) and FN(t)( _y) be the valuesof the estimator bF ( _y) and of the �nite population distribution function at the point_y in iteration t for t = 1; : : : ;M . The estimated bias of an estimator is computed asM�1PMt=1 � bF(t)( _y) � FN(t)( _y)	. Tables 4.5 and 4.8 present the bias for Model 1 forn = 60 and n = 120 respectively. Tables 4.5 and 4.8 show that when the model iscorrectly speci�ed none of the estimators has noticeable bias for the parameter valuesinvestigated. Although none of the biases represented in Tables 4.5 and 4.8 exceeds 0.2percent points, more than 5% of the entries are signi�cantly di�erent from zero for atest of level 5%. We discuss several explanations for the possible bias.The local-residuals estimator for a �xed number of bins and the Chambers andDunstan estimator are model unbiased when computed with the true �. In Tables 4.5 and4.8 the local-residuals estimator and the Chambers and Dunstan estimator are computedusing b� de�ned in (3.1.5). The Rao, Kovar and Mantel estimator is asymptoticallyunbiased, but for a sample of size 60 may be biased. Note that none of the entries inTable 4.8 is signi�cantly di�erent from zero for the local-residuals estimators, for theChambers and Dunstan estimator and for the Rao, Kovar and Mantel estimator. Thebias in the poststrati�ed estimator may be due to the collapsing algorithm describedabove. We could have used the method of collapsing strata presented in Fuller (1966)to obtain an unbiased estimator.The Horvitz-Thompson estimator is conditionally biased given the sample indexes,but unbiased when averaging over all possible simple random samples. Although in



112Table 4.5 there are two out of the seven entries for the Horvitz-Thompson estimatorthat are signi�cantly di�erent from zero, none of the entries in the next �ve tables issigni�cant at a 5% level. Thus, out of 42 entries, we have approximately 5% that aresigni�cantly di�erent from zero.Tables 4.6 and 4.9 give the bias of the estimators for Model 2, for sample sizes of 60and 120, respectively. The Chambers and Dunstan estimator bFCD( _y) is the most a�ectedby misspeci�cation of the variance function, followed by the local-residuals estimatorcomputed with Bmin bins. For a sample size of 60, the Chambers and Dunstan estimatoris overestimating the �nite population distribution function by as much as 3.987 percentpoints for the 5th superpopulation quantile. The bias in the Chambers and Dunstanestimator does not decrease when the sample size increases to 120. For a sample of size120 the �nite population distribution function is overestimated by 3.941 percent pointsfor the 5th superpopulation quantile.The bias for the local-residuals estimator computed with Bmin bins does decreasewhen the sample size increases, due to the fact that the number of bins selected by thecrossvalidation procedure are larger for samples of size 120 than for samples of size 60.The bias in the local-residuals estimator with six bins is less than half a percent pointfor the seven quantiles considered when the sample size is 60. When the sample size is120, the biases of the local-residuals estimator computed with a �xed number of binsfor the quantiles investigated are less than 0.3%. The reduction in bias is proportionalto the increase in sample size as the bins lengths decrease with the sample size.The three other estimators considered, bFRKMdm( _y), bFps( _y) and bFHT ( _y), are robust toheterogeneous variances. For both sample sizes, 60 and 120, the biases in the estimatorsbFRKMdm( _y), bFps( _y) and bFHT( _y) are essentially zero. Thus, under misspeci�cation of themodel variance function, the local-residuals estimator with �xed number of bins and the



113bFRKMdm( _y) exhibit superior performance with respect to the bias criterion to that ofthe Chambers and Dunstan estimator. Also, the biases in the local-residuals estimatorcomputed with Bmin bins for Model 2, although somewhat larger, are still signi�cantlysmaller than those of the Chambers and Dunstan estimator.Tables 4.7 and 4.10 give the bias of the estimators under Model 3, that is, whenthe mean function of the model has been misspeci�ed. In this case, the poststrati-�ed estimator and the Horvitz-Thompson estimator have negligible bias. The biases ofthe other four estimators are functions of the quantiles and the sample size, with thelocal-residuals estimators with �xed B, in general, having smaller bias than the threeestimators bFminL ( _y), bFCD( _y) and bFRKMdm( _y). For lower quantiles the local-residuals es-timator with �xed B has negligible bias, whereas the biases of the local-residuals withBmin bins estimator, Chambers and Dunstan estimator and Rao, Kovar and Mantelestimator are signi�cant. For upper quantiles, all estimators have comparable biases.Tables 4.11 through 4.14 show the contribution of the bias to the mean square error:nE� bF ( _y)�� FN( _y)o2nE� bF ( _y)�FN ( _y)�2o�1, for Models 2 and 3 for the local-residualsestimators bFminL ( _y) and bFL( _y), and for the Chambers and Dunstan estimator. For theChambers and Dunstan estimator and for the local-residuals estimator bFminL ( _y) the biasmakes an important contribution to the mean square error. The bias contribution tothe mean square error for the local-residuals estimator with �xed B is negligible wheneither the mean or the variance have been misspeci�ed. The bias in the local-residualsestimator with Bmin bins makes a signi�cant contribution to the mean square error whenthe variance function has been misspeci�ed, but the contributions are much smaller inmagnitude than those of the Chambers and Dunstan estimator. For Model 2 and forModel 3, the bias contribution to the mean square error for the Chambers and Dunstanestimator does not decrease when the sample size increases.



114Tables 4.15 through 4.20 show the square root of the mean square error for theHorvitz-Thompson estimator and the ratios of the root mean square errors of the otherestimators to the root mean square error of the Horvitz-Thompson estimator for Models1, 2 and 3 and sample sizes of 60 and 120. When the model is correctly speci�ed, Tables4.15 and 4.18, the Chambers and Dunstan estimator has the smallest mean square errorsfor the seven quantiles investigated for both sample sizes. The local-residuals estimatorwithBmin bins is the second best with respect to the mean square error criterion, followedby the local-residuals estimator with �xed B. The root mean square error of estimatorbFL( _y) for the superpopulation median is about 60% of the root mean square error of theHorvitz-Thompson estimator for samples of size 60 or 120.For Model 2, Tables 4.16 and 4.19 indicate that the local-residuals estimator with�xed B, in general, has smaller root mean square error than the other estimators. TheChambers and Dunstan estimator is the estimator most a�ected by the variance mis-speci�cation of Model 2 for the sample size of 60. The local-residuals estimator withBmin bins performs uniformly better than the Chambers and Dunstan estimator.For Model 3 and for a sample size of 60, Table 4.17 shows that both local-residualsestimators perform better than bFCD( _y), bFRKMdm( _y) and bFHT ( _y), and the performanceof the local-residuals estimators is similar to the performance of bFps( _y). For Model 3 andfor a sample size of 120, the performances of the estimators bFminL ( _y), bFL( _y), bFRKMdm( _y)and bFps( _y) are similar. The local-residuals estimator with �xed B has uniformly smallerroot mean square error than the other estimators for the seven superpopulation quantilesconsidered.We can summarize the results from Tables 4.5 through 4.10, referring to the bias ofthe estimators, and the results from Tables 4.15 through 4.20, referring to the root meansquare error, as follows:



115{ the local-residuals estimator with �xed B is robust in terms of bias againstdepartures from the superpopulation model used to construct the estimator,{ the local-residuals estimator withBmin bins is less sensitive to misspeci�cationthan the Chambers and Dunstan estimator,{ the procedure that selects the number of bins seems to select too few bins forModel 2, and too many bins for Model 3,{ the local-residuals estimator with �xed B has in general smaller mean squareerror than the Rao, Kovar and Mantel estimator, the poststrati�ed estimatorand the Horvitz-Thompson estimator,{ the performance of both local-residuals estimators is superior to the perfor-mance of the Chambers and Dunstan estimator when the model is incorrectlyspeci�ed.We study the estimation of the variance for the local-residuals estimator with a �xednumber of bins. The remaining tables, Table 4.21 through Table 4.32, are related to theperformance of the variance estimators studied in Section 3.3 for the model variance ofbFL( _y)� FN( _y) and the model variance of bFL( _y) as an estimator of the superpopulationdistribution function. The three estimators considered are eVee( _y) de�ned in (3.3.2), eVL( _y)de�ned in (3.3.10), and eVJK( _y) de�ned in (3.3.11). Estimator eVee( _y) is an estimator ofthe variance of the �nite population estimation error of the local-residuals estimator,bFL( _y) � FN ( _y). Estimators eVL( _y) and eVJK( _y) are used to estimate the variance ofthe error of the local-residuals estimator bFL( _y) as an estimator of the superpopulationdistribution function, bFL( _y)�F ( _y), where bFL( _y) is de�ned in (3.1.4) and F ( _y) is de�nedin (2.1.5). When the variance estimators are computed using the estimated b�, we usethe notation bVee( _y), bVL( _y), and bVJK( _y), for the three estimators. The two versions ofthe jackknife estimator (3.3.11) that we mentioned in Section (3.3) are:



116{ bVJKwo( _y) for the version that uses the b� and the byij computed from the sampleA N ,{ bVJK( _y) for the version that recomputes b� and byij for each of the n reducedsamples A N � f�g.From Tables 4.21 through 4.26 one can see that for all combination of models andsample sizes considered, the average of estimator bVee( _y) and the average of estimatorbVL( _y) are, in general, very similar to the variance of bFL( _y)� FN( _y) and to the varianceof bFL( _y)�F ( _y), respectively. The mean of the estimator bVJK( _y) is always greater thanthe mean of the estimator bVJKwo( _y), as may be expected from the fact that bVJK( _y)introduces additional variability due to the estimation of � and recalculation of the byij.Both Jackknife variances are greater, on average, than the variance computed usingbVL( _y).In Tables 4.27 through 4.32 we present results on the estimated probability thata 95% con�dence interval constructed with one of the four variance estimators willcontain the percentile of the �nite population distribution function. Since the samplingfraction is 0.10 in both populations, the variance of bFL( _y) � FN ( _y) is about 0.9 ofthe variance of bFL( _y) � F ( _y). The three estimators of the model variance of bFL( _y) �F ( _y) can be modi�ed to obtain estimators of the model variance of bFL( _y) � FN ( _y) bymultiplying bVL( _y), bVJKwo( _y) and bVJK( _y) by (1 � nN�1). The standardized estimatorsare likely to converge faster to the limiting normal variable in the middle part of thedistribution than in the tails of the distribution. Thus, in �nite samples, the con�denceintervals for the �nite population distribution function evaluated at quantiles towardsthe tails of the distribution constructed using the limiting normal theory are likely tohave inferior coverage probabilities to those of the con�dence intervals for the �nitepopulation distribution function for quantiles near the middle part of the distribution.



117The coverage probabilities of the con�dence intervals constructed with bVee( _y) andwith 0:9bVL( _y) are very similar in the six tables that represent the three models andtwo sample sizes for the seven quantiles considered. Since bVL( _y) is much faster tocompute than bVee( _y), we can approximate bVee( _y) by (1�nN�1)bVL( _y) to reduce computingtime. Due to the larger variances obtained for the jackknife estimators, the con�denceintervals constructed with the jackknife estimators generally have coverage probabilitieslarger than those of the con�dence intervals constructed with bVee( _y) or (1�nN�1)bVL( _y).For Model 1 and Model 2, the con�dence intervals have probabilities close to 0.95 ofincluding the �nite population distribution function, especially for the middle part ofthe distribution. For Model 3, the con�dence intervals for quantiles in the middle part ofthe distribution constructed with the four variance estimators, bVee( _y), bVL( _y), bVJKwo( _y)and bVJK( _y), tend to cover the percentiles of the �nite population distribution functionmore than 95% of the time.



118Table 4.3 Estimated distribution of the number of bins (B) selected by thecross-validation procedure for Model 1, Model 2 and Model 3 fora sample size of n = 60. Bc = 20, 2500 iterations for Model 1 andModel 2; Bc = 30, 10000 iterations for Model 3. Standard errorsare smaller than 0.0047 for Model 1 and Model 2 and smaller than0.0064 for Model 3B Model 1 Model 2 Model 31 0.8783 0.3312 0.00002 0.0500 0.3331 0.00003 0.0286 0.1844 0.00004 0.0164 0.0626 0.00005 0.0106 0.0398 0.00286 0.0052 0.0137 0.00887 0.0042 0.0132 0.02608 0.0022 0.0074 0.04249 0.0018 0.0046 0.072410 0.0008 0.0031 0.090811 0.0008 0.0019 0.114412 0.0004 0.0015 0.101213 0.0002 0.0008 0.090414 0.0001 0.0010 0.082015 0.0001 0.0008 0.089216 0.0000 0.0005 0.070017 0.0001 0.0001 0.053618 0.0000 0.0002 0.034019 0.0002 0.0001 0.032020 0.0000 0.0000 0.018821 0.0000 0.0000 0.014822 0.0000 0.0000 0.016823 0.0000 0.0000 0.014424 0.0000 0.0000 0.009225 0.0000 0.0000 0.005226 0.0000 0.0000 0.002827 0.0000 0.0000 0.002428 0.0000 0.0000 0.002029 0.0000 0.0000 0.001630 0.0000 0.0000 0.0020



119Table 4.4 Estimated distribution of the number of bins (B) selected by thecross-validation procedure for Model 1, Model 2 and Model 3 for asample size of n = 120. Bc = 20, 2500 iterations for Model 1 andModel 2; Bc = 30, 10000 iterations for Model 3. Standard errorsare smaller than 0.0046 for Model 1 and Model 2, and smaller than0.0057 for Model 3B Model 1 Model 2 Model 31 0.8734 0.1398 0.00002 0.0457 0.3085 0.00003 0.0322 0.2547 0.00004 0.0176 0.1201 0.00005 0.0109 0.0830 0.00006 0.0071 0.0299 0.00007 0.0051 0.0252 0.00008 0.0031 0.0121 0.00009 0.0015 0.0077 0.000810 0.0011 0.0063 0.005211 0.0007 0.0039 0.024012 0.0003 0.0026 0.021213 0.0003 0.0017 0.042414 0.0004 0.0010 0.050415 0.0002 0.0011 0.070416 0.0000 0.0006 0.070017 0.0003 0.0007 0.059218 0.0000 0.0003 0.090419 0.0001 0.0003 0.074420 0.0000 0.0005 0.083621 0.0000 0.0000 0.080822 0.0000 0.0000 0.053623 0.0000 0.0000 0.044824 0.0000 0.0000 0.038425 0.0000 0.0000 0.040426 0.0000 0.0000 0.030427 0.0000 0.0000 0.031628 0.0000 0.0000 0.015629 0.0000 0.0000 0.015630 0.0000 0.0000 0.014031 0.0000 0.0000 0.013632 0.0000 0.0000 0.009233 0.0000 0.0000 0.009234 0.0000 0.0000 0.005635 0.0000 0.0000 0.0052
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Table 4.5 Estimated bias of alternative estimators of distribution function �100 for Model 1. Standard error in parentheses. N = 600, n = 60;10; 000 iterationsLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 6)5% 0.046 0.051 0.022 0.065 0.051 0.057(0.017) (0.023) (0.016) (0.026) (0.027) (0.028)10% 0.051 0.062 0.015 0.075 0.073 0.066(0.024) (0.031) (0.022) (0.034) (0.035) (0.038)25% 0.016 0.004 -0.009 0.016 -0.008 0.005(0.031) (0.039) (0.029) (0.043) (0.044) (0.054)50% 0.059 0.096 0.065 0.114 0.119 0.138(0.027) (0.037) (0.025) (0.042) (0.043) (0.063)75% 0.018 -0.024 0.048 -0.054 -0.059 -0.031(0.016) (0.024) (0.014) (0.030) (0.032) (0.054)90% 0.026 0.012 0.027 -0.008 0.016 -0.019(0.009) (0.011) (0.009) (0.018) (0.022) (0.037)95% -0.000 0.014 -0.006 0.009 0.020 -0.009(0.008) (0.009) (0.007) (0.015) (0.022) (0.027)
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Table 4.6 Estimated bias of alternative estimators of distribution function �100 for Model 2. Standard error in parentheses. N = 600, n = 60;10; 000 iterationsLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 6)5% 2.345 0.391 3.987 0.016 0.016 0.004(0.030) (0.027) (0.029) (0.030) (0.029) (0.028)10% 2.144 0.414 3.481 0.007 0.002 0.001(0.037) (0.037) (0.034) (0.041) (0.040) (0.039)25% -0.449 -0.451 -0.930 -0.093 -0.080 -0.107(0.046) (0.053) (0.041) (0.057) (0.058) (0.057)50% -2.658 -0.351 -6.129 -0.026 -0.031 -0.041(0.059) (0.059) (0.052) (0.061) (0.062) (0.065)75% -1.885 -0.267 -3.790 0.026 0.007 -0.004(0.052) (0.050) (0.056) (0.052) (0.052) (0.056)90% -0.580 -0.144 -0.141 0.013 0.012 0.008(0.036) (0.035) (0.039) (0.036) (0.036) (0.039)95% 0.055 -0.039 0.729 -0.018 -0.015 -0.011(0.026) (0.026) (0.024) (0.027) (0.027) (0.028)
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Table 4.7 Estimated bias of alternative estimators of distribution function �100 for Model 3. Standard error in parentheses. N = 600, n = 60;2500 iterations for (c-val) and 10; 000 iterations for all othersLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 6)5% 0.376 0.010 1.186 0.437 -0.022 -0.014(0.056) (0.025) (0.029) (0.030) (0.026) (0.028)10% 0.410 -0.019 0.902 0.525 -0.041 -0.025(0.069) (0.033) (0.036) (0.040) (0.033) (0.038)25% 0.238 -0.013 -0.047 0.662 -0.018 0.033(0.073) (0.037) (0.048) (0.055) (0.036) (0.053)50% 0.083 0.129 0.087 0.508 0.033 0.087(0.055) (0.034) (0.059) (0.062) (0.030) (0.062)75% -0.004 0.804 0.539 0.340 0.082 0.073(0.052) (0.034) (0.052) (0.053) (0.028) (0.053)90% 0.289 0.379 0.913 0.209 0.046 0.028(0.059) (0.033) (0.034) (0.037) (0.030) (0.037)95% 0.210 0.127 0.244 0.124 0.002 -0.007(0.050) (0.026) (0.024) (0.027) (0.026) (0.028)
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Table 4.8 Estimated bias of alternative estimators of distribution function� 100 for Model 1. Standard error in parentheses. N = 1200,n = 120; 10; 000 iterationsLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 10)5% 0.005 0.008 -0.005 0.013 0.015 0.018(0.012) (0.017) (0.011) (0.018) (0.019) (0.020)10% 0.013 0.036 -0.012 0.034 0.043 0.047(0.017) (0.022) (0.015) (0.023) (0.024) (0.027)25% -0.005 0.036 -0.042 0.039 0.031 0.068(0.021) (0.028) (0.020) (0.029) (0.030) (0.038)50% -0.003 -0.029 -0.000 -0.024 -0.027 0.025(0.018) (0.027) (0.016) (0.029) (0.030) (0.044)75% 0.004 -0.004 0.031 0.011 0.012 0.043(0.012) (0.019) (0.011) (0.022) (0.022) (0.038)90% -0.001 -0.011 0.012 -0.015 -0.014 -0.020(0.008) (0.011) (0.008) (0.015) (0.016) (0.027)95% 0.005 0.027 0.010 0.017 0.023 0.017(0.006) (0.008) (0.006) (0.012) (0.013) (0.019)
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Table 4.9 Estimated bias of alternative estimators of distribution function� 100 for Model 2. Standard error in parentheses. N = 1200,n = 120; 10; 000 iterationsLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 10)5% 1.550 0.180 3.941 0.028 0.036 0.031(0.023) (0.020) (0.020) (0.021) (0.021) (0.020)10% 1.517 0.213 3.483 -0.003 0.012 0.002(0.027) (0.027) (0.024) (0.029) (0.028) (0.028)25% -0.593 -0.273 -1.177 0.015 0.044 0.024(0.034) (0.038) (0.028) (0.040) (0.040) (0.039)50% -1.744 -0.109 -6.677 -0.000 -0.007 0.014(0.044) (0.042) (0.036) (0.042) (0.043) (0.045)75% -1.022 -0.142 -3.531 -0.041 -0.049 -0.035(0.036) (0.036) (0.042) (0.036) (0.037) (0.039)90% -0.410 -0.085 0.344 -0.010 -0.020 -0.004(0.025) (0.025) (0.026) (0.026) (0.026) (0.027)95% -0.048 -0.023 0.930 0.003 0.000 0.009(0.018) (0.018) (0.016) (0.019) (0.019) (0.020)
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Table 4.10 Estimated bias of alternative estimators of distribution function� 100 for Model 3. Standard error in parentheses. N = 1200,n = 120; 2500 iterations for (c-val) and 10; 000 iterations for allothersLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 10)5% 0.175 0.001 0.678 0.233 -0.018 0.001(0.039) (0.018) (0.020) (0.021) (0.018) (0.020)10% 0.221 -0.009 0.539 0.299 -0.006 -0.002(0.049) (0.023) (0.025) (0.028) (0.024) (0.027)25% 0.136 0.006 0.109 0.384 0.021 0.027(0.052) (0.026) (0.035) (0.039) (0.026) (0.039)50% 0.034 -0.031 -0.054 0.201 -0.022 -0.015(0.038) (0.020) (0.042) (0.044) (0.019) (0.044)75% -0.071 0.112 0.098 0.124 0.007 -0.022(0.033) (0.019) (0.037) (0.038) (0.017) (0.038)90% 0.141 0.328 0.250 0.074 0.004 -0.022(0.033) (0.019) (0.025) (0.026) (0.015) (0.026)95% 0.161 0.184 0.364 0.075 0.023 0.010(0.031) (0.017) (0.017) (0.019) (0.015) (0.019)
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Table 4.11 Ratio of Bias square to Mean Square Error � 100 for Lo-cal-residuals estimator and Chambers-Dunstan estimator forModel 2. Standard error in parentheses. N = 600, n = 60;10; 000 iterationsF ( _y) Local-residuals Local-residuals Chambers-Dunstan(c-val) (B = 6)5% 37.29 2.03 65.68(0.60) (0.27) (0.40)10% 25.51 1.22 51.47(0.66) (0.21) (0.55)25% 0.95 0.71 4.91(0.19) (0.17) (0.42)50% 16.85 0.35 58.50(0.68) (0.12) (0.62)75% 11.75 0.29 31.17(0.58) (0.11) (0.73)90% 2.48 0.17 0.13(0.30) (0.08) (0.07)95% 0.04 0.02 8.20(0.04) (0.03) (0.57)
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Table 4.12 Ratio of Bias square to Mean Square Error � 100 for Lo-cal-residuals estimator and Chambers-Dunstan estimator forModel 3. Standard error in parentheses. N = 600, n = 60;2500 iterations for (c-val) and 10; 000 iterations for all othersF ( _y) Local-residuals Local-residuals Chambers-Dunstan(c-val) (B = 6)5% 1.77 0.00 13.93(0.51) (0.01) (0.55)10% 1.40 0.00 6.00(0.46) (0.01) (0.44)25% 0.42 0.00 0.01(0.26) (0.01) (0.02)50% 0.09 0.14 0.02(0.12) (0.08) (0.03)75% 0.00 5.38 1.06(0.01) (0.43) (0.20)90% 0.96 1.33 6.79(0.39) (0.23) (0.51)95% 0.71 0.24 1.06(0.34) (0.10) (0.21)
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Table 4.13 Ratio of Bias square to Mean Square Error � 100 for Lo-cal-residuals estimator and Chambers-Dunstan estimator forModel 2. Standard error in parentheses. N = 1200, n = 120;10; 000 iterationsF ( _y) Local-residuals Local-residuals Chambers-Dunstan(c-val) (B = 10)5% 32.17 0.84 79.44(0.61) (0.18) (0.26)10% 23.79 0.62 68.40(0.65) (0.15) (0.39)25% 2.99 0.50 14.85(0.34) (0.14) (0.65)50% 13.37 0.07 77.76(0.61) (0.05) (0.34)75% 7.32 0.16 41.88(0.49) (0.08) (0.68)90% 2.71 0.12 1.68(0.31) (0.07) (0.26)95% 0.07 0.02 25.69(0.05) (0.02) (0.79)
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Table 4.14 Ratio of Bias square to Mean Square Error � 100 for Lo-cal-residuals estimator and Chambers-Dunstan estimator forModel 3. Standard error in parentheses. N = 1200, n = 120;2500 iterations for (c-val) and 10; 000 iterations for all othersF ( _y) Local-residuals Local-residuals Chambers-Dunstan(c-val) (B = 10)5% 0.81 0.00 10.46(0.35) (0.00) (0.52)10% 0.81 0.00 4.29(0.36) (0.01) (0.39)25% 0.28 0.00 0.09(0.21) (0.00) (0.06)50% 0.03 0.02 0.02(0.07) (0.03) (0.03)75% 0.19 0.35 0.07(0.17) (0.12) (0.05)90% 0.72 2.81 0.97(0.33) (0.32) (0.20)95% 1.08 1.21 4.31(0.41) (0.22) (0.41)
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Table 4.15 Ratio of Root Mean Square Error (rMSE) of alternative estima-tors to the rMSE of Horvitz-Thompson estimator, and rMSE ofHorvitz-Thompson estimator � 100, for Model 1. Standard errorin parentheses. N = 600, n = 60; 10; 000 iterationsRatios of rMSE for alternative estimators: rMSE �100 ofLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 6)5% 0.617 0.831 0.558 0.929 0.970 2.804(0.006) (0.005) (0.004) (0.004) (0.005) (0.028)10% 0.630 0.809 0.583 0.889 0.919 3.812(0.005) (0.005) (0.005) (0.005) (0.005) (0.038)25% 0.570 0.715 0.541 0.781 0.808 5.444(0.005) (0.005) (0.004) (0.005) (0.005) (0.054)50% 0.432 0.584 0.395 0.661 0.678 6.291(0.004) (0.005) (0.004) (0.005) (0.005) (0.063)75% 0.299 0.442 0.269 0.566 0.592 5.383(0.003) (0.004) (0.002) (0.005) (0.005) (0.054)90% 0.240 0.284 0.233 0.491 0.601 3.713(0.002) (0.003) (0.002) (0.004) (0.005) (0.037)95% 0.278 0.320 0.272 0.565 0.803 2.718(0.003) (0.003) (0.003) (0.005) (0.005) (0.027)



131

Table 4.16 Ratio of Root Mean Square Error (rMSE) of alternative estima-tors to the rMSE of Horvitz-Thompson estimator, and rMSE ofHorvitz-Thompson estimator � 100, for Model 2. Standard errorin parentheses. N = 600, n = 60; 10; 000 iterationsRatios of rMSE for alternative estimators: rMSE �100 ofLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 6)5% 1.357 0.967 1.738 1.057 1.029 2.830(0.011) (0.005) (0.014) (0.003) (0.004) (0.028)10% 1.098 0.969 1.255 1.050 1.030 3.867(0.008) (0.005) (0.010) (0.003) (0.003) (0.039)25% 0.816 0.944 0.743 1.008 1.026 5.652(0.004) (0.004) (0.005) (0.003) (0.003) (0.057)50% 0.998 0.914 1.236 0.944 0.957 6.483(0.006) (0.005) (0.009) (0.004) (0.004) (0.065)75% 0.984 0.890 1.215 0.930 0.931 5.589(0.006) (0.005) (0.009) (0.004) (0.004) (0.056)90% 0.955 0.904 1.006 0.945 0.946 3.857(0.006) (0.005) (0.007) (0.004) (0.005) (0.039)95% 0.938 0.916 0.911 0.966 0.977 2.794(0.006) (0.006) (0.006) (0.004) (0.005) (0.028)
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Table 4.17 Ratio of Root Mean Square Error (rMSE) of alternative estima-tors to the rMSE of Horvitz-Thompson estimator, and rMSE ofHorvitz-Thompson estimator � 100, for Model 3. Standard errorin parentheses. N = 600, n = 60; 2500 iterations for (c-val) and10; 000 iterations for all othersRatios of rMSE for alternative estimators: rMSE �100 ofLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 6)5% 1.010 0.903 1.133 1.085 0.943 2.803(0.016) (0.005) (0.010) (0.005) (0.005) (0.028)10% 0.917 0.865 0.973 1.066 0.884 3.786(0.014) (0.005) (0.006) (0.004) (0.005) (0.038)25% 0.685 0.690 0.894 1.039 0.669 5.346(0.012) (0.005) (0.003) (0.003) (0.005) (0.053)50% 0.444 0.550 0.954 1.012 0.486 6.160(0.008) (0.005) (0.003) (0.002) (0.004) (0.062)75% 0.483 0.649 0.982 1.003 0.534 5.336(0.010) (0.005) (0.003) (0.001) (0.004) (0.053)90% 0.790 0.883 0.939 0.995 0.795 3.731(0.012) (0.006) (0.004) (0.001) (0.005) (0.037)95% 0.904 0.937 0.858 0.995 0.948 2.758(0.014) (0.005) (0.004) (0.001) (0.005) (0.028)
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Table 4.18 Ratio of Root Mean Square Error (rMSE) of alternative estima-tors to the rMSE of Horvitz-Thompson estimator, and rMSE ofHorvitz-Thompson estimator � 100, for Model 1. Standard errorin parentheses. N = 1200, n = 120; 10; 000 iterationsRatios of rMSE for alternative estimators: rMSE �100 ofLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 12)5% 0.609 0.873 0.554 0.928 0.960 1.968(0.007) (0.005) (0.004) (0.004) (0.005) (0.020)10% 0.628 0.836 0.580 0.874 0.903 2.664(0.007) (0.005) (0.005) (0.004) (0.005) (0.027)25% 0.557 0.730 0.526 0.761 0.780 3.836(0.006) (0.005) (0.004) (0.005) (0.005) (0.038)50% 0.420 0.613 0.372 0.654 0.670 4.401(0.005) (0.005) (0.003) (0.005) (0.005) (0.044)75% 0.311 0.500 0.279 0.571 0.590 3.804(0.003) (0.004) (0.003) (0.005) (0.005) (0.038)90% 0.304 0.413 0.291 0.564 0.595 2.665(0.003) (0.004) (0.003) (0.005) (0.005) (0.027)95% 0.309 0.399 0.299 0.604 0.699 1.927(0.003) (0.004) (0.003) (0.005) (0.005) (0.019)
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Table 4.19 Ratio of Root Mean Square Error (rMSE) of alternative estima-tors to the rMSE of Horvitz-Thompson estimator, and rMSE ofHorvitz-Thompson estimator � 100, for Model 2. Standard errorin parentheses. N = 1200, n = 120; 10; 000 iterationsRatios of rMSE for alternative estimators: rMSE �100 ofLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 12)5% 1.359 0.980 2.199 1.055 1.024 2.011(0.015) (0.004) (0.017) (0.003) (0.003) (0.020)10% 1.130 0.986 1.530 1.051 1.026 2.752(0.011) (0.004) (0.012) (0.003) (0.003) (0.028)25% 0.875 0.980 0.778 1.011 1.024 3.923(0.009) (0.004) (0.006) (0.003) (0.003) (0.039)50% 1.068 0.934 1.695 0.943 0.960 4.467(0.010) (0.005) (0.013) (0.004) (0.004) (0.045)75% 0.966 0.913 1.395 0.927 0.936 3.912(0.010) (0.005) (0.010) (0.004) (0.004) (0.039)90% 0.916 0.921 0.975 0.949 0.952 2.719(0.009) (0.005) (0.006) (0.003) (0.004) (0.027)95% 0.924 0.936 0.932 0.966 0.975 1.970(0.009) (0.005) (0.006) (0.003) (0.005) (0.020)
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Table 4.20 Ratio of Root Mean Square Error (rMSE) of alternative estima-tors to the rMSE of Horvitz-Thompson estimator, and rMSE ofHorvitz-Thompson estimator � 100, for Model 3. Standard errorin parentheses. N = 1200, n = 120; 2500 iterations for (c-val)and 10; 000 iterations for all othersRatios of rMSE for alternative estimators: rMSE �100 ofLocal- Local- Chambers- Rao-Kovar Post- Horvitz-F ( _y) residuals residuals Dunstan Mantel strati�ed Thompson(c-val) (B = 12)5% 0.979 0.913 1.060 1.052 0.932 1.977(0.020) (0.005) (0.008) (0.003) (0.005) (0.020)10% 0.906 0.866 0.963 1.042 0.871 2.700(0.018) (0.005) (0.005) (0.003) (0.005) (0.027)25% 0.671 0.678 0.919 1.026 0.672 3.850(0.013) (0.005) (0.003) (0.002) (0.005) (0.039)50% 0.436 0.463 0.965 1.007 0.430 4.396(0.009) (0.004) (0.002) (0.001) (0.004) (0.044)75% 0.429 0.492 0.973 1.000 0.433 3.826(0.009) (0.004) (0.003) (0.001) (0.004) (0.038)90% 0.632 0.743 0.962 0.997 0.586 2.640(0.013) (0.006) (0.003) (0.001) (0.004) (0.026)95% 0.811 0.878 0.918 0.993 0.812 1.908(0.016) (0.006) (0.005) (0.001) (0.005) (0.019)
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Table 4.21 Square root of Monte Carlo estimated variance �100 (*) andsquare root of Monte Carlo average of variance estimators � 100(**) for Model 1. Standard error in parentheses. N = 600,n = 60; 1000 iterations. Local-residuals estimator calculated with�xed number of bins (B = 6)(�) (��) (�) (��) (��) (��)F ( _y) bFL( _y)� FN( _y) bVee( _y) bFL( _y)� F ( _y) bVL( _y) bVJKwo( _y) bVJK( _y)5% 2.252 2.244 2.332 2.326 2.431 2.445(0.024) (0.008) (0.024) (0.009) (0.009) (0.009)10% 2.975 2.965 3.094 3.079 3.218 3.235(0.031) (0.007) (0.032) (0.007) (0.008) (0.008)25% 3.710 3.745 3.875 3.891 4.066 4.080(0.036) (0.006) (0.038) (0.007) (0.007) (0.007)50% 3.535 3.551 3.657 3.680 3.845 3.855(0.036) (0.007) (0.037) (0.007) (0.008) (0.008)75% 2.319 2.374 2.358 2.430 2.536 2.516(0.023) (0.007) (0.024) (0.007) (0.007) (0.007)90% 1.124 1.109 1.067 1.093 1.125 1.121(0.012) (0.004) (0.012) (0.004) (0.004) (0.005)95% 0.909 0.837 0.872 0.813 0.829 0.917(0.009) (0.003) (0.009) (0.003) (0.003) (0.004)
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Table 4.22 Square root of Monte Carlo estimated variance �100 (*) andsquare root of Monte Carlo average of variance estimators � 100(**) for Model 2. Standard error in parentheses. N = 600,n = 60; 1000 iterations. Local-residuals estimator calculated with�xed number of bins (B = 6)(�) (��) (�) (��) (��) (��)F ( _y) bFL( _y)� FN( _y) bVee( _y) bFL( _y)� F ( _y) bVL( _y) bVJKwo( _y) bVJK( _y)5% 2.585 2.649 2.674 2.746 2.874 2.888(0.027) (0.011) (0.028) (0.011) (0.012) (0.012)10% 3.562 3.612 3.714 3.759 3.933 3.956(0.036) (0.010) (0.038) (0.010) (0.011) (0.012)25% 5.096 5.075 5.299 5.298 5.543 5.609(0.052) (0.007) (0.054) (0.008) (0.008) (0.009)50% 5.634 5.591 5.877 5.845 6.109 6.205(0.056) (0.006) (0.057) (0.006) (0.007) (0.008)75% 4.740 4.669 4.927 4.883 5.103 5.214(0.049) (0.007) (0.051) (0.007) (0.008) (0.009)90% 3.358 3.225 3.528 3.369 3.520 3.679(0.034) (0.009) (0.036) (0.009) (0.009) (0.010)95% 2.497 2.351 2.592 2.453 2.560 2.700(0.026) (0.009) (0.027) (0.010) (0.010) (0.011)
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Table 4.23 Square root of Monte Carlo estimated variance �100 (*) andsquare root of Monte Carlo average of variance estimators � 100(**) for Model 3. Standard error in parentheses. N = 600,n = 60; 1000 iterations. Local-residuals estimator calculated with�xed number of bins (B = 6)(�) (��) (�) (��) (��) (��)F ( _y) bFL( _y)� FN( _y) bVee( _y) bFL( _y)� F ( _y) bVL( _y) bVJKwo( _y) bVJK( _y)5% 2.445 2.455 2.555 2.564 2.682 3.010(0.027) (0.010) (0.027) (0.010) (0.010) (0.015)10% 3.187 3.228 3.327 3.375 3.529 3.876(0.033) (0.008) (0.034) (0.009) (0.009) (0.014)25% 3.691 3.798 3.828 3.968 4.149 4.536(0.037) (0.009) (0.039) (0.009) (0.010) (0.014)50% 3.323 3.556 3.390 3.713 3.882 4.078(0.036) (0.010) (0.037) (0.011) (0.011) (0.012)75% 3.319 3.578 3.364 3.739 3.910 4.010(0.038) (0.011) (0.038) (0.011) (0.012) (0.012)90% 3.270 3.259 3.314 3.419 3.573 3.651(0.034) (0.009) (0.034) (0.009) (0.010) (0.011)95% 2.569 2.523 2.601 2.643 2.763 2.934(0.029) (0.010) (0.029) (0.011) (0.011) (0.014)
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Table 4.24 Square root of Monte Carlo estimated variance �100 (*) andsquare root of Monte Carlo average of variance estimators � 100(**) for Model 1. Standard error in parentheses. N = 1200,n = 120; 1000 iterations. Local-residuals estimator calculatedwith �xed number of bins (B = 10)(�) (��) (�) (��) (��) (��)F ( _y) bFL( _y)� FN( _y) bVee( _y) bFL( _y)� F ( _y) bVL( _y) bVJKwo( _y) bVJK( _y)5% 1.679 1.660 1.747 1.747 1.800 1.802(0.040) (0.010) (0.041) (0.010) (0.011) (0.011)10% 2.123 2.172 2.210 2.286 2.356 2.358(0.046) (0.009) (0.049) (0.009) (0.009) (0.009)25% 2.680 2.721 2.763 2.864 2.951 2.952(0.060) (0.008) (0.060) (0.008) (0.008) (0.008)50% 2.623 2.570 2.798 2.702 2.784 2.784(0.063) (0.009) (0.069) (0.009) (0.009) (0.009)75% 1.920 1.846 1.972 1.929 1.987 1.988(0.041) (0.008) (0.044) (0.009) (0.009) (0.009)90% 1.075 1.119 1.087 1.148 1.181 1.167(0.025) (0.006) (0.026) (0.007) (0.007) (0.007)95% 0.767 0.781 0.751 0.793 0.811 0.821(0.017) (0.005) (0.016) (0.006) (0.006) (0.006)
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Table 4.25 Square root of Monte Carlo estimated variance �100 (*) andsquare root of Monte Carlo average of variance estimators � 100(**) for Model 2. Standard error in parentheses. N = 1200,n = 120; 1000 iterations. Local-residuals estimator calculatedwith �xed number of bins (B = 10)(�) (��) (�) (��) (��) (��)F ( _y) bFL( _y)� FN( _y) bVee( _y) bFL( _y)� F ( _y) bVL( _y) bVJKwo( _y) bVJK( _y)5% 1.858 1.877 1.962 1.977 2.038 2.034(0.044) (0.012) (0.046) (0.013) (0.013) (0.014)10% 2.571 2.585 2.716 2.726 2.810 2.803(0.057) (0.011) (0.060) (0.012) (0.012) (0.013)25% 3.841 3.679 4.008 3.886 4.007 4.020(0.088) (0.008) (0.095) (0.009) (0.009) (0.010)50% 4.199 4.010 4.357 4.239 4.369 4.381(0.094) (0.006) (0.098) (0.007) (0.007) (0.007)75% 3.474 3.381 3.659 3.577 3.686 3.712(0.078) (0.008) (0.084) (0.008) (0.008) (0.009)90% 2.382 2.363 2.473 2.498 2.574 2.619(0.054) (0.010) (0.054) (0.010) (0.010) (0.011)95% 1.800 1.743 1.868 1.842 1.897 1.934(0.043) (0.011) (0.045) (0.011) (0.012) (0.012)
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Table 4.26 Square root of Monte Carlo estimated variance �100 (*) andsquare root of Monte Carlo average of variance estimators � 100(**) for Model 3. Standard error in parentheses. N = 1200,n = 120; 1000 iterations. Local-residuals estimator calculatedwith �xed number of bins (B = 10)(�) (��) (�) (��) (��) (��)F ( _y) bFL( _y)� FN( _y) bVee( _y) bFL( _y)� F ( _y) bVL( _y) bVJKwo( _y) bVJK( _y)5% 1.758 1.723 1.834 1.822 1.878 1.969(0.041) (0.011) (0.042) (0.011) (0.011) (0.014)10% 2.307 2.243 2.429 2.373 2.446 2.559(0.051) (0.009) (0.054) (0.009) (0.010) (0.014)25% 2.454 2.520 2.520 2.665 2.747 2.873(0.055) (0.010) (0.057) (0.010) (0.010) (0.016)50% 1.922 2.078 1.996 2.195 2.263 2.334(0.041) (0.012) (0.043) (0.012) (0.012) (0.014)75% 1.870 1.948 1.930 2.054 2.117 2.179(0.046) (0.013) (0.047) (0.014) (0.014) (0.015)90% 1.857 1.970 1.901 2.085 2.149 2.173(0.046) (0.011) (0.045) (0.011) (0.012) (0.012)95% 1.627 1.657 1.667 1.756 1.809 1.863(0.041) (0.010) (0.041) (0.011) (0.011) (0.013)
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Table 4.27 Coverage probability for a 95% con�dence interval of FN( _y) basedon alternative variance estimators � 100 for Model 1. Stan-dard error in parentheses. N = 600, n = 60; 1000 iterations.Local-residuals estimator calculated with �xed number of bins(B = 6)Variance estimator used for the con�dence intervalF ( _y) bVee( _y) 0:9bVL( _y) 0:9bVJKwo( _y) 0:9bVJK( _y)5% 89.24 88.86 89.52 89.68(0.44) (0.44) (0.43) (0.43)10% 92.96 92.64 93.38 93.48(0.36) (0.37) (0.35) (0.35)25% 94.92 94.70 95.40 95.50(0.31) (0.32) (0.30) (0.29)50% 94.28 94.08 94.78 94.92(0.33) (0.33) (0.31) (0.31)75% 93.84 93.18 93.82 93.78(0.34) (0.36) (0.34) (0.34)90% 92.64 90.72 91.48 91.22(0.37) (0.41) (0.39) (0.40)95% 89.60 86.76 86.70 89.56(0.43) (0.48) (0.48) (0.43)
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Table 4.28 Coverage probability for a 95% con�dence interval of FN( _y) basedon alternative variance estimators � 100 for Model 2. Stan-dard error in parentheses. N = 600, n = 60; 1000 iterations.Local-residuals estimator calculated with �xed number of bins(B = 6)Variance estimator used for the con�dence intervalF ( _y) bVee( _y) 0:9bVL( _y) 0:9bVJKwo( _y) 0:9bVJK( _y)5% 90.46 90.06 90.88 91.10(0.42) (0.42) (0.41) (0.40)10% 93.18 92.80 93.50 93.36(0.36) (0.37) (0.35) (0.35)25% 93.44 93.12 94.18 94.24(0.35) (0.36) (0.33) (0.33)50% 94.72 94.58 95.56 95.86(0.32) (0.32) (0.29) (0.28)75% 93.34 93.28 94.22 94.56(0.35) (0.35) (0.33) (0.32)90% 91.12 90.90 92.02 93.16(0.40) (0.41) (0.38) (0.36)95% 88.06 87.80 88.72 89.40(0.46) (0.46) (0.45) (0.44)



144
Table 4.29 Coverage probability for a 95% con�dence interval of FN( _y) basedon alternative variance estimators � 100 for Model 3. Stan-dard error in parentheses. N = 600, n = 60; 1000 iterations.Local-residuals estimator calculated with �xed number of bins(B = 6)Variance estimator used for the con�dence intervalF ( _y) bVee( _y) 0:9bVL( _y) 0:9bVJKwo( _y) 0:9bVJK( _y)5% 89.34 89.04 90.18 92.28(0.44) (0.44) (0.42) (0.38)10% 92.58 92.44 93.30 94.92(0.37) (0.37) (0.35) (0.31)25% 94.62 94.40 95.30 96.56(0.32) (0.33) (0.30) (0.26)50% 95.78 95.60 96.52 96.96(0.28) (0.29) (0.26) (0.24)75% 95.22 95.18 95.96 96.22(0.30) (0.30) (0.28) (0.27)90% 91.68 91.66 92.76 93.10(0.39) (0.39) (0.37) (0.36)95% 87.28 87.24 88.30 89.42(0.47) (0.47) (0.45) (0.43)
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Table 4.30 Coverage probability for a 95% con�dence interval of FN( _y) basedon alternative variance estimators � 100 for Model 1. Stan-dard error in parentheses. N = 1200, n = 120; 1000 iterations.Local-residuals estimator calculated with �xed number of bins(B = 10)Variance estimator used for the con�dence intervalF ( _y) bVee( _y) 0:9bVL( _y) 0:9bVJKwo( _y) 0:9bVJK( _y)5% 92.70 92.70 93.30 93.30(0.82) (0.82) (0.79) (0.79)10% 94.40 94.40 95.10 95.10(0.73) (0.73) (0.68) (0.68)25% 95.20 95.40 95.90 95.90(0.68) (0.66) (0.63) (0.63)50% 94.30 94.30 94.70 94.70(0.73) (0.73) (0.71) (0.71)75% 93.40 93.20 94.10 94.10(0.79) (0.80) (0.75) (0.75)90% 95.10 94.00 95.00 94.90(0.68) (0.75) (0.69) (0.70)95% 93.90 92.50 92.90 93.50(0.76) (0.83) (0.81) (0.78)
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Table 4.31 Coverage probability for a 95% con�dence interval of FN( _y) basedon alternative variance estimators � 100 for Model 2. Stan-dard error in parentheses. N = 1200, n = 120; 1000 iterations.Local-residuals estimator calculated with �xed number of bins(B = 10)Variance estimator used for the con�dence intervalF ( _y) bVee( _y) 0:9bVL( _y) 0:9bVJKwo( _y) 0:9bVJK( _y)5% 92.60 92.50 92.90 92.90(0.83) (0.83) (0.81) (0.81)10% 94.70 94.60 95.40 95.20(0.71) (0.71) (0.66) (0.68)25% 93.80 93.90 95.00 95.30(0.76) (0.76) (0.69) (0.67)50% 94.70 94.80 95.50 95.40(0.71) (0.70) (0.66) (0.66)75% 93.40 93.50 94.20 94.20(0.79) (0.78) (0.74) (0.74)90% 93.70 93.90 94.50 95.00(0.77) (0.76) (0.72) (0.69)95% 91.40 91.60 92.10 92.50(0.89) (0.88) (0.85) (0.83)
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Table 4.32 Coverage probability for a 95% con�dence interval of FN( _y) basedon alternative variance estimators � 100 for Model 3. Stan-dard error in parentheses. N = 1200, n = 120; 1000 iterations.Local-residuals estimator calculated with �xed number of bins(B = 10)Variance estimator used for the con�dence intervalF ( _y) bVee( _y) 0:9bVL( _y) 0:9bVJKwo( _y) 0:9bVJK( _y)5% 91.20 91.30 92.50 93.40(0.90) (0.89) (0.83) (0.79)10% 93.20 93.30 93.90 94.70(0.80) (0.79) (0.76) (0.71)25% 95.20 95.30 95.90 96.50(0.68) (0.67) (0.63) (0.58)50% 96.00 96.10 96.50 96.60(0.62) (0.61) (0.58) (0.57)75% 95.40 95.40 95.90 96.60(0.66) (0.66) (0.63) (0.57)90% 94.80 95.20 95.70 95.90(0.70) (0.68) (0.64) (0.63)95% 91.50 91.70 92.30 92.40(0.88) (0.87) (0.84) (0.84)
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5 CONCLUSIONSThere are some general comments that we can make about the local-residuals esti-mator of the �nite population distribution function.The local-residuals estimator was designed to overcome the sensitivity to model mis-speci�cation of the Chambers and Dunstan estimator, and to retain the good perfor-mance of the model based Chambers and Dunstan method when the model is correctlyspeci�ed. The robustness of the local-residuals estimator resides in the construction ofsmall bins where it seems reasonable to assume a common distribution function for theresiduals. The variance estimators for the local-residuals estimator exhibit robustnessagainst model misspeci�cation similar to the robustness of the local-residuals estimator.The local-residuals estimator is a nondecreasing function of _y with limit of zero when_y goes to �1 and limit equal to one as _y ! +1. The three estimators proposed byRao, Kovar and Mantel (1990) fail to meet this property.The k(N � n) imputed values byij used in the local-residuals estimator need to becomputed only once. As shown in (3.1.9), the distribution function can be computedfor as many _y values as desired by using the yj from the sample and the byij imputedvalues, without recomputing the regression line or reusing the auxiliary information.Variance estimators can also be computed from the yj from the sample and the byijimputed values. This may be important in practice to save computation time when



149there is a large number of auxiliary variables or a large number of points _y where wewant to compute the distribution function.The results of model consistency and limiting normal distribution for the local-residuals estimator obtained in Theorem 3.2.3 and Theorem 3.2.4 require only thatthe number of bins increase as the sample size increases. Thus the theory holds forbins containing a �xed number of elements. Variance estimators that are consistentunder the same conditions were developed. One variance estimator, that proposed inTheorem 3.3.2, requires the number of elements per bin to increase as N increases.When the number of bins increases faster than the number of elements per bin, byTheorem 3.2.4, the local-residuals estimator has a limiting normal distribution. On theother hand, when the number of bins is chosen on the basis of the sample, one maybe able to choose a number of bins to get e�ciency close to that of the Chambers andDunstan estimator under a correctly speci�ed model.
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